QU Jisong,ZHANG Lijuan,ZHU Qiannan,et al.Effects of Temperature Water Collaborative Regulation on Nitrogen Transformation and Microbial Community Characteristics of Lycium barbarum Branch Powder[J].Northern Horticulture,2024,(9):62-69.[doi:10.11937/bfyy.20233850]
温度-水分协同调控对枸杞枝条粉氮素转化及微生物群落特征的影响
- Title:
- Effects of Temperature Water Collaborative Regulation on Nitrogen Transformation and Microbial Community Characteristics of Lycium barbarum Branch Powder
- 文章编号:
- 1001-0009(2024)09-0062-08
- Keywords:
- goji berry branch powder; nitrogen conversion; microbial community; temperature; water content
- 分类号:
- S 216
- 文献标志码:
- A
- 摘要:
- 以枸杞枝条粉为试材,采用双因素三因子设计,以尿素为氮源,研究温度-水分对枸杞枝条粉基质化发酵过程中发酵指标参数的影响,以期为西北地区枸杞产业循环发展新模式的探索提供参考依据。结果表明:在发酵期间各处理全氮含量均呈逐渐增加的趋势,翻堆温度上限对发酵嗜热期和温热期堆体全氮含量影响显著,在成熟期翻堆温度上限较高时(60~65 ℃)不显著,而温度上限较低时(55 ℃)翻堆堆体含水量对堆体全氮含量影响显著。堆体含水量下限(40%)和翻堆温度上限(65 ℃)较高时更有利于铵态氮的积累。翻堆温度上限稍低时(55 ℃)对硝态氮含量影响显著。翻堆温度上限(65 ℃)对嗜热期和温热期堆体有机物总量影响显著,含水量下限(40%)在发酵期间翻堆温度上限较高时(60~65 ℃)各处理差异不显著,但翻堆温度上限较低时(55 ℃)翻堆堆体含水量下限对堆体有机物总量影响显著。堆体含水量(50%)或翻堆温度(65 ℃)上限较高时更有利于脲酶活性、蔗糖酶活性、多酚氧化酶活性、碱性磷酸酶活性提升。在翻堆温度上限为60 ℃、堆体含水量下限为50%条件下Pseudallecheria和Lasiobolidium占比超过50%,基于PCA分析不同翻堆温度上限、堆体含水量下限对枸杞枝条发酵堆体微生物群落组成有一定影响,且翻堆温度上限为60 ℃、堆体含水量下限为50%与其他处理差异显著。因此。翻堆温度上限为60 ℃、堆体含水量下限为50%的条件更有利于枸杞枝条粉基质化发酵腐熟的正向进程。
- Abstract:
- Taking Lycium barbarum branch powder as the test material,a two factor and three factor design was adopted,with urea as the nitrogen source,the effects of temperature moisture on the fermentation index parameters during the substrate fermentation process of Lycium barbarum branch powder were studied,in order to provide reference for the exploration of the new cycle development model of wolfberry industry in northwest China.The results showed that during the fermentation period,the total nitrogen content of each treatment showed a gradual increasing trend.The flipping temperature had a significant impact on the total nitrogen content of the fermentation heap during the thermophilic and warm periods.It was not significant when the upper limit of the flipping temperature was high during the mature period (60-65 ℃),while the water content of the flipping heap had a significant impact on the total nitrogen content of the heap when the upper limit of the temperature was low (55 ℃).When the water content and turnover temperature of the pile were higher,it was more conducive to the accumulation of ammonium nitrogen.When the upper limit of the flipping temperature was slightly lower (55 ℃),it had a significant impact on the nitrate nitrogen content.The flipping temperature had a significant impact on the total organic matter in the thermophilic and warm stages of fermentation.The difference in water content was not significant when the upper limit of flipping temperature was high during fermentation (60-65 ℃),but when the upper limit of flipping temperature was slightly low (55 ℃),the water content in the flipping pile had a significant impact on the total organic matter in the pile.When the water content of the pile or the upper limit of theflipping temperature was higher,it was more conducive to increasing urease activity,sucrase activity,polyphenol oxidase activity,and alkaline phosphatase activity.Under the conditions of upper limit of flipping temperature of 60 ℃ and lower limit of pile water content of 50%,Pseudollecheria and Lasiobolidium accounted for over 50%.Based on PCA analysis,different flipping temperatures and pile water content had a significant impact on the microbial community composition of goji berry branch fermentation pile,and the upper limit of flipping temperature of 60 ℃ and lower limit of pile water content of 50% showed significant differences compared to other treatments.Therefore,the upper limit of flipping temperature was 60 ℃,and the lower limit of water content in the pile was 50%,which was more conducive to the positive process of substrate fermentation and maturation of goji berry branch powder.
参考文献/References:
[1]SAVVAS D,GIANQUINTO G,TUZEL Y,et al.Soilless culture.Good agricultural practices for greenhouse vegetable crops,principles for mediterranean climate areas[C].FAO Plant Production and Protection Paper,2013,217.[2]GRAFIADELLIS I,MATTAS K,MALOUPA E,et al.Aneconomic analysis of soilless culture in Gerbera production[J].HortScience,2000,35(2):300-303.[3]RAVIV M,LISTU J H.Significance of soilless cultivation in agriculture[C]//Soilless Culture:Theory and Practice.AcademicPress,San Diego,USA,2008.[4]NEJAD A R,ISMAILI A.Changes in growth,essential oil yield andcomposition of geranium (Pelargonium graveolens L.) as affected by growingmedia[J].J Sci Food Agric,2014,94(5):905-910.[5]SAVVAS D.Nutrient solution recycling[M]//SAVVAS D,PASSSAM H C.Hydroponic Production of Vegetables and Ornamentals.Embryo Publications,Athens,Greece,2002.[6]李光义,李勤奋,张晶元.木薯茎秆基质化的堆肥工艺及评价[J].农业工程学报,2011,27(1):320-325.[7]宋成军,田宜水,罗娟,等.厌氧发酵固体剩余物建植高羊茅草皮的生态特征[J].农业工程学报,2015,31(17):254-260.[8]张硕,余宏军,蒋卫杰.发酵玉米芯或甘蔗渣基质的黄瓜育苗效果[J].农业工程学报,2015,31(11):236-242.[9]CATIA S,PIEBIEP G,JOAO F,et al.Effect of lignocellulosic and phenolic compounds on ammonia,nitric oxide and greenhouse gas emissions during composting[J].Journal of Cleaner Production,2018,171:548-556.[10]RAFAELA C,NARCIS C,RYSTYNA M,et al.Nitrification during extended co-composting of extreme mixtures of green waste and solid fraction of cattle slurry to obtain growing media[J].Waste Management,2016,58:118-125.[11]RAFAELA C,NARCIS C,RYSTYNA M,et al.Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media[J].Bioresource Technology,2015,179:398-406.[12]JARA-SAMANIEGO J,PEREZ M D,BUSTAMANTE M A,et al.Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region,Ecuador:Suitability of the obtained composts for seedling production[J].Journal of Cleaner Production,2017,141:1349-1358.[13]NIETOA A,GASSCO G,PAZ-FERREIROJ,et al.The effect of pruning waste and biochar addition on brown peat basedgrowing media properties[J].Scientia Horticulturae,2016,199:142-148.[14]JACE E B,LUCIA C,GIAMPAOLO Z.Environmental and agronomic performance of fresh rice hulls used as growing medium component for Cyclamen persicum L.pot plants[J].Journal of Cleaner Production,2017,142:2125-2132.[15]李谦盛,郭世荣,李式军.利用工农业有机废弃物生产优质无土栽培基质[J].自然资源学报,2002,17(4):515-519.[16]张唐娟,袁巧霞,陈红,等.菇渣作为有机栽培基质好氧改性的实验[J].环境工程学报,2013,7(2):722-726.[17]刘超杰,郭世荣,王长义,等.混配醋糟复合基质对辣椒幼苗生长的影响[J].园艺学报,2010,37(4):559-566.[18]马彦霞,郁继华,张晶,等.设施蔬菜栽培茬口对生态型无土栽培基质性状变化的影响[J].生态学报,2014,34(14):4071-4079.[19]辜夕容,邓雪梅,刘颖旎,等.竹废弃物的资源化利用研究进展[J].农业工程学报,2016,32(1):236-242.[20]刘伟,余宏军,蒋卫杰.我国蔬菜无土栽培基质研究与应用进展[J].中国生态农业学报,2006,14(3):4-7.[21]曲继松,郭文忠,张丽娟,等.柠条粉作基质对西瓜幼苗生长发育及干物质积累的影响[J].农业工程学报,2010,26(8):291-295.[22]曲继松,张丽娟,朱倩楠,等.外源微生物菌剂对枸杞枝条粉基质化发酵堆体腐熟进程的影响[J].环境科学研究,2019,32(2):332-339.[23]冯海萍,曲继松,杨冬艳,等.外源微生物对苦参枝屑基质化发酵堆体腐熟效果的影响[J].农业机械学报,2015(1):191-199.[24]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.[25]ALLISON S D,VITOUSEK P M.Responses of extracellular enzymes to simple and complex nutrient inputs[J].Soil Biology and Biochemistry,2005,37(5):937-944.[26]PIOTROWSKA A,OLEJNIK A,CYPLIK P,et al.The kinetics of nicotine degradation,enzyme activities and genotexic potential in the characterization of tobacco waste composting[J].Bioresource Technology,2009,100(21):5037-5044.
备注/Memo
第一作者简介:曲继松(1980-),男,博士,研究员,现主要从事设施环境调控和蔬菜高效栽培等研究工作。E-mail:qujs119@126.com.基金项目:国家自然科学基金资助项目(31860576,U21A20226);宁夏农业高质量发展资助项目(NGSB2021803)。收稿日期:2023-11-08