[1]段军明,杨祥,董明刚.基于模型压缩对番茄病害识别的应用研究[J].北方园艺,2023,(10):138-144.[doi:10.11937/bfyy.20222864]
 DUAN Junming,YANG Xiang,DONG Minggang.Research on the Application of Tomato Disease Identification Based on Model Compression[J].Northern Horticulture,2023,(10):138-144.[doi:10.11937/bfyy.20222864]
点击复制

基于模型压缩对番茄病害识别的应用研究

参考文献/References:

[1]郭利进,李言.基于DCNN的玉米叶部病害识别方法[J].粮食与油脂,2022,35(3):72-75,98.[2]张建华,孔繁涛,吴建寨,等.基于改进VGG卷积神经网络的棉花病害识别模型[J].中国农业大学学报,2018,23(11):161-171.[3]宋晨勇,白皓然,孙伟浩,等.基于GoogLeNet改进模型的苹果叶病诊断系统设计[J].中国农机化学报,2021,42(7):148-155.[4]黄林生,罗耀武,杨小冬,等.基于注意力机制和多尺度残差网络的农作物病害识别[J].农业机械学报,2021,52(10):264-271.[5]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Las Vegas:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016.[6]MA N,ZHANG X,ZHENG H T,et al.Shufflenetv2:Practical guidelines for efficient cnn architecture design[C]//Munich: Proceedings of the European Conference on Computer Vision (ECCV),2018.[7]HUGHES D,SALATHE M.An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL].https://arxiv.org/abs/1511.08060.2015-11-25.[8]HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].Computer Science,2015,14(7):38-39.[9]郝立扬.基于量化卷积神经网络的模型压缩方法研究[D].成都:电子科技大学,2020.[10]YIM J,JOO D,BAE J,et al.A gift from knowledge distillation:Fast optimization,network minimization and transfer learning[C]//Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017.[11]KIM Y,RUSH A M.Sequence-level knowledge distillation[C]//Texas: Proceedings of the 2016 conference on Empirical Methods in Natural Language Processing,2016.[12]GOU J,YU B,MAYBANK S J,et al.Knowledge distillation:A survey[J].International Journal of Computer Vision,2021,129(6):1789-1819.[13]黄震华,杨顺志,林威,等.知识蒸馏研究综述[J].计算机学报,2022,45(3):624-653.[14]XU C,GAO W,LI T,et al.Teacher-student collaborative knowledge distillation for image classification[J].Applied Intelligence,2023,2(53):1997-2009.[15]ZHANG H,ZU K,LU J,et al.EPSANet:An efficient pyramid squeeze attention block on convolutional neural network[C]//Macau:Proceedings of the Asian Conference on Computer Vision,2022 .[16]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Salt Lake : Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018.[17]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25(2):84-90.[18]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//San Diego:Proceedings of the 3rd International Conference on Learning Representations,2015.[19]赵宏宇,沈江,安邦.基于代价敏感方法的智能制造故障诊断[J].计算机集成制造系统,2019,25(9):2180-2187.[20]贾兆红,张袁源,王海涛,等.基于Res2Net的双线性注意力番茄病害时期识别方法[J].农业机械学报,2023,53(7):259-266.

相似文献/References:

[1]刘君,王学伟.融合CNN多卷积特征与HOG的番茄叶部病害检测算法[J].北方园艺,2020,44(04):147.[doi:10.11937/bfyy.20193405]
 LIU Jun,WANG Xuewei.A Tomato Leaf Disease Detection Algorithm Based on CNN Multi-convolution Feature and HOG[J].Northern Horticulture,2020,44(10):147.[doi:10.11937/bfyy.20193405]
[2]余游江,喻彩丽,尚远航,等.基于Stacking模型的红枣品种分类识别[J].北方园艺,2022,(08):139.[doi:10.11937/bfyy.20214005]
 YU Youjiang,YU Caili,SHANG Yuanhang,et al.Classification and Recognition of Jujube Varieties Based on Stacking Model Fusion[J].Northern Horticulture,2022,(10):139.[doi:10.11937/bfyy.20214005]

备注/Memo

第一作者简介:段军明(1993-),男,硕士研究生,研究方向为图像处理与深度学习。E-mail:1032241157@qq.com.责任作者:杨祥(1970-),男,硕士,教授,现主要从事图像处理与模式识别等研究工作。E-mail:490745953@qq.com.基金项目:国家自然科学基金地区资助项目(61563012);广西自然科学基金资助项目(2021GXNSFAA220074)。收稿日期:2022-07-12

更新日期/Last Update: 2023-07-13