CAI Yubo,LIANG Yunjiang,ZHANG Boying,et al.Effects of Physiological Regulation of γ-aminobutyric Acid on the Salt Tolerance in Xanthoceras sorbifolia Bunge[J].Northern Horticulture,2022,(19):53-60.[doi:10.11937/bfyy.20214619]
γ-氨基丁酸(GABA)对盐胁迫下文冠果生理特性的影响
- Title:
- Effects of Physiological Regulation of γ-aminobutyric Acid on the Salt Tolerance in Xanthoceras sorbifolia Bunge
- Keywords:
- γ-aminobutyric acid; NaCl stress; Xanthoceras sorbifolia Bunge; physiological index; protective enzyme
- 文献标志码:
- A
- 摘要:
- 以文冠果无性系扦插苗为试材,设置1% NaCl、5 mmol·L-1 GABA+1% NaCl、10 mmol·L-1 GABA+1% NaCl、15 mmol·L-1 GABA+1% NaCl 4个胁迫处理,测定文冠果形态指标、根系活力、内源GABA含量、保护酶活性以及丙二醛(MDA)、超氧阴离子(O·〖TX--*9〗2)和Na+含量,研究了γ-氨基丁酸(GABA)对盐胁迫下文冠果生理特性的影响,以期为文冠果植株耐盐性研究提供参考依据。结果表明:盐胁迫下,文冠果植株生长速率、植株鲜质量、叶面积、根干质量、茎干质量和叶干质量显著低于对照,而主根长度显著高于对照,10 mmol·L-1以上GABA明显缓解盐胁迫下文冠果生长发育,尤其15 mmol·L-1 GABA处理文冠果外部形态基本恢复到对照水平;外源GABA显著抑制盐胁迫下文冠果根系Na+积累,提高超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,从而降低MDA的积累。综上,外源GABA显著抑制盐胁迫下文冠果根系内Na+积累,提高保护酶活性和根系活力,降低根系的质膜氧化损伤,缓解盐胁迫压力。
- Abstract:
- The leaf cuttings of Xanthoceras sorbifolia Bunge were used as the test materials,the four stress treatments,1% NaCl,5 mmol·L-1 GABA+1% NaCl,10 mmol·L-1 GABA+1% NaCl,and 15 mmol·L-1 GABA+1% NaCl were set.Morphological indexes,root activity,endogenous GABA content,protective enzyme activity,malondialdehyde (MDA),superoxide anion (O·〖TX--*9〗2) and Na+ contents were determined.The effects of γ-aminobutyric acid (GABA) on the physiological characteristics of Xanthoceras sorbifolia Bunge under salt stress were studied,in order to provide reference for the study on the salt tolerance of Xanthoceras sorbifolia Bunge.The results showed that under salt stress,the plant growth rate,plant fresh weight,leaf area,root dry weight,stem dry weight and leaf dry weight were significantly lower than the control,while the main root length was significantly higher than the control.10 mmol·L-1 GABA significantly alleviated the growth and development of Xanthoceras sorbifolia Bunge under salt stress.In particular,the external morphology of Xanthoceras sorbifolia Bunge under 15 mmol·L-1 GABA treatment was basically restored to the control level.Exogenous GABA significantly inhibited Na+ accumulation and increased the activities of superoxide dismutase (SOD),peroxidase (POD) and catalase (CAT) in the roots of Xanthoceras sorbifolia Bunge under salt stress,thus decreasing the accumulation of MDA.In conclusion,exogenous GABA significantly inhibited Na+ accumulation in roots of Xanthoceras sorbifolia Bunge under salt stress,improved protective enzyme activity and root activity,reduced plasma membrane oxidative damage of roots,and alleviated salt stress.
参考文献/References:
[1]BOUCHE N,LACOMBE B,FROMM H.GABA signaling:A conserved and ubiquitous mechanism[J].Trends in Cell Biology,2003(13):607-610.[2]PODLESAKOVA K,UGENA L,SPCHAL L,et al.Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J].New Biotechnology,2019,48:53-65.[3]ZAREI A,TROBACHER C P,COOKE A R,et al.Apple fruit copper amine oxidase isoforms:Peroxisomal MdAO1 prefers diamines as substrates,whereas extracellular MdAO2 exclusively utilizes monoamines[J].Plant Cell Physiology,2015,56:137-147.[4]OH S J,KIM H S,LIM S T.Increase of gamma-aminobutyric acid contents in rice embryo with protein hydrolysates and pyridoxal-5-phosphate using abiotic stress[J].Journal of Cereal Science,2019,89:102803.[5]CHE-OTHMAN M H,JACOBY R P,MILLAR A H,et al.Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress[J].New Phytologist,2020,225:1047-1048.[6]MEKONNEN D W,FLGGE U I,LUDEWIG F.Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana[J].Plant Science,2016,245:25-34.[7]NAYYAR H,KAUR R,KAUR S,et al.γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants[J].Journal of Plant Growth Regulation,2014(33):408-419.[8]VIJAYAKUMARI K,PUTHUR J T.γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn.plants subjected to PEG-induced stress[J].Plant Growth Regulation,2016,78:57-67.[9]WANG Y C,GU W R,MENG Y,et al.γ-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants[J].Scientific Reports,2017(7):43609.[10]SHETEIWY M S,SHAO H,QI W,et al.GABA-alleviated oxidative injury induced by salinity,osmotic stress and their combination by regulating cellular and molecular signals in rice[J].International Journal of Molecular Sciences,2019(20):5709.[11]牟洪香,侯新村.文冠果的研究进展[J].安徽农业科学,2007,35(3):703-705.[12]刘明君.文冠果育苗及栽培管理技术[J].现代园艺,2012(12):27-28.[13]邢军武.盐碱环境与盐碱农业[J].地球科学进展,2001(14):257-266.[14]张晓燕.神东矿区不同种源地文冠果生长适宜性及耐盐性研究[D].呼和浩特:内蒙古农业大学,2012.[15]李福鑫,李旭,金香花,等.NaCl胁迫对文冠果扦插幼苗光合特性的影响[J].延边大学农学学报,2015,40(6):143-144.[16]李永德,李旭,金香花,等.NaCl胁迫对文冠果幼苗生长和生理生化特征的影响[J].延边大学农学学报,2015,37(3):213-216.[17]张自阳,候轩轩,陈培,等.MST种子活力剂对小麦种子活力及幼苗生长的影响[J].河南科技学院学报(自然科学版),2014(2):1-5.[18]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003.[19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.[20]LYU Y G,ZHANG H,MENG X Y,et al.A validated HPLC method for the determination of GABA by pre-column derivatization with 2,4-dinitrofluorodinitrobenzene and its application to plant GAD activity study[J].Analytical Letters,2010,43:2663-2671.[21]付长方,张海艳.盐胁迫对玉米种子萌发、幼苗叶绿素含量和渗透势的影响[J].山东农业科学,2015,47(5):27-30.[22]张翯,顾万荣,王泳超,等.DCPTA对盐胁迫下玉米苗期根系生长、渗透调节及膜透性的影响[J].生态学杂志,2015,34(9):2474-2481.[23]王泳超,郑博元,顾万荣,等.γ-氨基丁酸对盐胁迫下玉米幼苗根系氧化损伤及内源激素的调控[J].农药学学报,2018,20(5):607-617.[24]罗黄颖,高洪波,夏庆平,等.γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响[J].中国农业科学,2011,44(4):753-761.[25]DEEWATTHANAWONG R,NOCK J F,WATKINS C B.γ-Aminobutyric acid (GABA) accumulation in four strawberry cultivars in response to elevated CO2 storage[J].Postharvest Biology Technology,2010,57:92-96.[26]SHANG H,CAO S,YANG Z,et al.Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage[J].Journal of Agricultural and Food Chemistry,2011,59:1264-1268.[27]刘明杰.拟南芥Na+、K+吸收与积累的研究[D].兰州:兰州大学,2014.[28]白丽萍,何雨,宋宇,等.茄子砧木Na+、K+含量、SK、Na运输与耐盐性关系研究[J].植物生理学报,2014,50(11):1645-1650.[29]FLOWERS T J,COLMER T D.Plant salt tolerance:Adaptations in halophytes[J].Annals of Botany,2015,115:327-331.[30]贾邱颖,吴晓蕾,冀胜鑫,等.γ-氨基丁酸对番茄嫁接苗耐盐性的生理调控效应[J].植物营养与肥料学报,2021(7):122-134.
相似文献/References:
[1]胡凤霞,唐艳领,刘金,等.辣椒砧木的筛选及其耐盐性研究[J].北方园艺,2013,37(04):24.
[2]石秋梅,邓翻云,吴敏言,等.罗布麻和大叶白麻种子萌发及幼苗生长耐盐性研究[J].北方园艺,2014,38(12):128.
SHI Qiu-mei,DENG Fan-yun,WU Min-yan,et al. Study on Salt Tolerance of Apocynum venetum Linn.and Poacynum hendersonii(Hook.f.) Woodson at Stages of Seed Germination and Seedlings Growth[J].Northern Horticulture,2014,38(19):128.
[3]张 芬,张 波,田丽萍,等.盐胁迫对番茄幼苗叶片光合特性及叶绿素和β-胡萝卜素含量的影响[J].北方园艺,2014,38(11):15.
ZHANG Fen,ZHANG Bo,TIAN Li-ping,et al.Effect of Salt Stress on Photosynthetic Characteristic and the Content of Chlorophyll and β-carotene in Tomato Seedling Leaves[J].Northern Horticulture,2014,38(19):15.
[4]常青山,张利霞,郑轶琦,等.盐胁迫下钙离子对苜蓿种子萌发的影响[J].北方园艺,2014,38(10):64.
CHANG Qing-shan,ZHANG Li-xia,ZHENG Yi-qi,et al.Effects of Ca2+?on Seed Germination Characteristics of Medicago sativa Under Salt Stress[J].Northern Horticulture,2014,38(19):64.
[5]杨 凯,孙迎坤,谭 雯,等.盐胁迫对香石竹种子萌发及幼苗生长的影响[J].北方园艺,2013,37(22):86.
YANG Kai,SUN Ying-kun,TAN Wen,et al.Effects of Salt Stress on Seeds Germination and Seedling Growth of Carnation[J].Northern Horticulture,2013,37(19):86.
[6]张 娇,张大治,马 艳,等.氯化钠模拟盐胁迫对沙冬青种子萌发和幼苗生长的影响[J].北方园艺,2014,38(14):65.
ZHANG Jiao,ZHANG Da-zhi,MA Yan,et al.Effect of NaCl Simulation of Salt Stress on Seed Germination and Seedling Growth of Ammopiptanthus mongolicus[J].Northern Horticulture,2014,38(19):65.
[7]韩志平,张海霞,刘 渊,等.NaCl胁迫对不同品种黄瓜种子萌发特性的影响[J].北方园艺,2014,38(01):1.
HAN Zhi-ping,ZHANG Hai-xia,LIU Yuan,et al.Effects of NaCl Stress on the Germination Characteristics of Different Varieties of Cucumber Seeds[J].Northern Horticulture,2014,38(19):1.
[8]张芬,张波,田丽萍,等.盐胁迫对加工番茄叶片番茄红素[J].北方园艺,2014,38(04):82.
ZHANG Fen,ZHANG Bo,TIAN Li-ping,et al.Effect of Salt Stress on Expression of Lycopene Cyclase Gene in Processing Tomato Leaves[J].Northern Horticulture,2014,38(19):82.
[9]何会流.外源水杨酸对盐胁迫下凤仙花种子萌发特性的影响[J].北方园艺,2013,37(13):75.
HE Hui-liu.Effect of Exogenous Salicylic Acid on the Seeds Germination Characters of Impatiens balsamina L.Under NaCl Stress[J].Northern Horticulture,2013,37(19):75.
[10]刘 杰.盐碱胁迫对向日葵体内矿质营养的影响[J].北方园艺,2014,38(02):1.
LIU Jie.Effects of Simulated Salt and Alkali Conditions on the Mineral Nutrition of Helianthus annuusL.[J].Northern Horticulture,2014,38(19):1.
[11]王春燕,郭玉佳,张晓倩,等.不同浓度NaCl胁迫下γ-氨基丁酸对黄瓜幼苗生长及矿质元素吸收的影响[J].北方园艺,2014,38(03):5.
WANG Chun-yan,GUO Yu-jia,ZHANG Xiao-qian,et al.Effect of γ-aminobutyric Acid on Growth and Mineral Elements Contents in Cucumber Seedlings Under Different NaCl Concentration[J].Northern Horticulture,2014,38(19):5.
[12]韩多红,王恩军,张勇,等.外源γ-氨基丁酸对盐胁迫下菘蓝幼苗活性氧和抗氧化系统的影响[J].北方园艺,2021,(06):111.[doi:10.11937/bfyy.20201151]
HAN Duohong,WANG Enjun,ZHANG Yong,et al.Effects of Exogenous γ-aminobutyric Acid (GABA) on Reactive Oxygen Species and Antioxidant System of Isatis indigotica Fort.Seedlings Under Salt Stress[J].Northern Horticulture,2021,(19):111.[doi:10.11937/bfyy.20201151]
备注/Memo
第一作者简介:蔡宇博(1999-),男,硕士研究生,研究方向为园林植物。E-mail:1450461404@qq.com.责任作者:罗广军(1964-),男,硕士,副教授,现主要从事植物生理与分子生物学等研究工作。E-mail:gjluo999@163.com.基金项目:国家自然科学基金资助项目(31760233,31460117)。收稿日期:2021-11-14