LIANG Kuijing,GAO Xiaokuan,YU Zhanjing,et al.Effects of Exogenous Sulfur on Photosynthetic Traits in Apple Seedlings Under Cadmium Stress[J].Northern Horticulture,2020,44(12):17-24.[doi:10.11937/bfyy.20194035]
外源硫对镉胁迫下苹果幼苗光合特性的影响
- Title:
- Effects of Exogenous Sulfur on Photosynthetic Traits in Apple Seedlings Under Cadmium Stress
- 文献标志码:
- A
- 摘要:
- 以“红富士”苹果幼苗为试材,采用盆栽法,研究(NH4)2SO4对CdCl2胁迫处理下苹果叶片光合色素、光合参数、叶绿素荧光参数和矿质营养元素等光合特性指标的影响,以期从光合特性层面揭示外源硫(S)介导的苹果解镉(Cd)毒机理。结果表明:10 mg?L-1 CdCl2处理导致苹果叶片叶绿素a含量和叶绿素b含量显著下降;净光合速率、蒸腾速率、气孔导度、胞间二氧化碳浓度均显著降低,表明Cd处理影响苹果叶片光合作用的主要原因在于叶绿素合成受阻和气孔的关闭。Cd处理导致苹果叶片光反应系统II(PSⅡ)的紊乱,主要表现在PSⅡ实际光化学效率、电子传递效率、化学淬灭系数显著下降,而非化学淬灭系数显著上升;在Cd处理的基础上,添加100 mg?L-1 (NH4)2SO4对苹果叶片叶绿素a含量、叶绿素b含量和叶绿素a/b比值具有显著的提升作用,同时提升苹果叶片光合作用和PSⅡ原初光化学反应量子效率。对4种与光合作用具有关联作用的矿质元素含量进行分析,结果显示Cd处理对苹果叶片Fe含量无显著影响,但Mg、Mn、Cu含量显著降低。添加外源S可显著提升Mg、Mn、Cu含量,Fe含量亦有一定的提升。结果表明Cd处理下苹果光合作用受到影响与Mg、Mn、Cu元素的亏缺有关,而与Fe元素无关。添加外源S可通过提升苹果叶片对Mg、Fe、Cu和Mn元素的吸收,增强Cd处理下苹果叶片光合作用和叶绿素荧光参数。
- Abstract:
- Malus pumila (apple) was taken as materials,a pot experiment was conducted to investigate the effects of exogenous (NH4)2SO4 on photosynthetic pigments,photosynthetic characteristics,chlorophyll fluorescence parameters,and mineral element contents in apple seedlings with the teatment of 10 mg?L-1 CdCl2.In order to uncover the intrinsic mechanism of excess sulfur(S) in detoxification of cadmium(Cd) on the aspect of photosynthetic characteristics.The results indicated that Cd stress lead to the significant reduction in contents of chlorophyll a and b,as well as the decreasing in net photosynthesis rate(Pn),transpiration rate(Tr),stomatal conductance(Gs),and intercellular concentrations of carbon dioxide(Ci).Cd induced inhibition of apple leaf photosynthesis were mainly attributed to the blocking of chlorophyll biosynthesis and leaf stoma.Cd treatment also resulted in disfunction of photosystem II(PSⅡ) in apple seedlings by significantly decreasing actual photochemical efficiency,electron transfer efficiency,and chemical quenching coefficient,while increasing nonchemical quenching coefficient.However,after the addition of 100 mg?L-1 (NH4)2SO4 in Cd treatment,the contents of chlorophyll a and b,ratio of chlorophyll a/b were all significantly increased.And the photosynthesis and quantum yield of PSⅡ photochemistry were both significantly improved.Meanwhile,Cd treatment significantly decreased content of magnesium(Mg),manganese(Mn),and copper(Cu),while there was no significant variation on iron(Fe) content.Exogenous S resulted in the increasing contents of Mg,Mn,and Cu,as well as Fe.These results implied that the Cd incited photosynthesis inhibition and PSⅡ disfunction might be involved in the decreasing Mg,Mn and Cu content in apple seedling leaves,but not Fe.However,surplus S could improve the photosynthesis and chlorophyll fluorescence parameters in apple seedlings under Cd stress by increasing the absorption of Mg,Fe,Cu and Mn.
参考文献/References:
[1]李婧,周艳文,陈森,等.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报,2015,21(24):104-107.[2]唐结明,姚爱军,梁业恒.广州市万亩果园土壤重金属污染调查与评价[J].亚热带资源与环境学报,2012,7(2):27-35.[3]梁俊,赵政阳,樊明涛.陕西渭北苹果园土壤中汞、镉污染与分布特征研究[J].农业工程学报,2008,24(3):209-213.[4]王开峰,彭娜,曾广裕.粤东银锑矿区周边土壤重金属污染状况评价[J].广东化工,2009,36(11):126-128.[5]肖振林,丛俏,曲蛟.钼矿区周边果园土壤重金属污染评价及对水果品质的影响[J].科学技术与工程,2010,10(23):5831-5834.[6]WANG Q,LIU J,CHENG S.Heavy metals in apple orchard soils and fruits and their health risks in Liaodong Peninsula,Northeast China[J].Environmental Monitoring and Assessment,2015,187(1):4178.[7]RIZWAN M,ALI S,ADREES M,et al.A critical review on effects,tolerance mechanisms and management of cadmium in vegetables[J].Chemosphere,2017,182(5):90-105.[8]TAO Q,JUPA R,LUO J,et al.The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii[J].Journal of Experimental Botany,2016,68(3):739-751.[9]CHANEY R L.How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers[J].Current Pollution Reports,2015,1(1):13-22.[10]HUGUET S,BERT V,LABOUDIGUE A,et al.Cd speciation and localization in the hyperaccumulator Arabidopsis halleri[J].Environmental & Experimental Botany,2012,82(5):54-65.[11]VERBRUGGEN N,HERMANS C,SCHAT H.Molecular mechanisms of metal hyperaccumulation in plants[J].New Phytologist,2009,181(4):759-776.[12]COBBETT C S.Phytochelatins and their roles in heavy metal detoxification[J].Plant Physiology,2000,123(3):825-832.[13]KHAN N A,SINGH S,UMAR S.Sulfur assimilation and abiotic stress in plants[M].Berlin:Springer-Verlag,2008.[14]LOU L,KANG J,PANG H,et al.Sulfur protects pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism[J].International Journal of Molecular Sciences,2017,18(8):1628.[15]陈英雯.镉胁迫对水稻光合生理特征及相关营养元素吸收影响研究[D].雅安:四川农业大学,2011.[16]MOBIN M,KHAN N A.Photosynthetic activity,pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress[J].Journal of Plant Physiology,2007,164(5):601-610. [17]王利,杨洪强,范伟国,等.平邑甜茶叶片光合速率及叶绿素荧光参数对氯化镉处理的响应[J].中国农业科学,2010,43(15):3176-3183.[18]LEE J,DONGHWAN S,SONG W Y,et al.Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells[J].Plant Molecular Biology,2004,54(6):805-815.[19]周江涛.苹果砧木对重金属镉吸收、富集及耐受机制研究[D].沈阳:沈阳农业大学,2017.[20]ARNON D I.Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta vulgaris[J].Plant Physiology,1949,24(1):1-15.[21]刘颖娇.遮阴对苹果叶片光合作用和PSⅡ反应中心的影响[D].杨陵:西北农林科技大学,2014.[22]谭明明,贺忠群,郑万刚.嫁接对铜胁迫下甜瓜幼苗光合特性与矿质元素吸收的影响[J].华北农学报,2014,29(5):186-192.[23]张帆,万雪琴,翟晶.镉处理下增施氮对杨树叶绿素合成和叶绿体超微结构的影响[J].核农学报,2013,28(3):485-491.[24]梁泰帅,刘昌欣,康靖全,等.硫对镉胁迫下小白菜镉富集、光合速率等生理特性的影响[J].农业环境科学学报,2015,34(8):1455-1463.[25]ZHANG S Y,ZHANG G C,LIU X,et al.The responses of photosynthetic rate and stomatal conductance of Fraxinus rhynchophylla to differences in CO2 concentration and soil moisture[J].Photosynthetica (Prague),2013,51(3):359-369.[26]FARQUHAR G D,SHARKEY T D.Stomatal conductance and photosynthesis[J].Annual Review of Plant Physiology,1982,33(1):317-345.[27]KHAN N A,MOHD A,PER T S,et al.Ethylene potentiates sulfur-mediated reversal of cadmium inhibited photosynthetic responses in mustard[J].Frontiers in Plant Science,2016(7):1628.[28]MASOOD A,KHAN MIR,FATMA M,et al.Involvement of ethylene in gibberellic acid-induced sulfur assimilation,photosynthetic responses,and alleviation of cadmium stress in mustard[J].Plant Physiology and Biochemistry,2016,104:1-10.[29]LOSCIALE P,HENDRICKSON L,GRAPPADELLI L C,et al.Quenching partitioning through light-modulated chlorophyll fluorescence:A quantitative analysis to assess the fate of the absorbed light in the field[J].Environmental and Experimental Botany,2011,73(1):73-79.[30]DEMMIG-ADAMS B,ADAMS W W,BARKER D H,et al.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J].Physiologia Plantarum,2008,98(2):253-264.[31]BOSCAIU M,BAUTISTA I,DONAT P,et al.Plant responses to abiotic stress[J].Current Opinion in Biotechnology,2011,22(3):S130-S130.[32]SCHTZENDBEL A,POLLE A.Plant responses to abiotic stresses:Heavy metal-induced oxidative stress and protection by mycorrhization[J].Journal of Experimental Botany,2002,53(372):1351-1365.[33]LI L,AI S,LI Y,et al.Exogenous silicon mediates alleviation of cadmium stress by promoting photosynthetic activity and activities of antioxidative enzymes in rice[J].Journal of Plant Growth Regulation,2017,37(2):602-611.[34]LAING W,GREER D,SUN O,et al.Physiological impacts of Mg deficiency in Pinus radiata:Growth and photosynthesis[J].New Phytologist,2000,146(1):47-57.[35]POPELKOVA H,BOSWELL N,YOCUM C.Probing the topography of the photosystem II oxygen evolving complex:PsbO is required for efficient calcium protection of the manganese cluster against dark-inhibition by an artificial reductant[J].Photosynthesis Research,2011,110(2):111-121.[36]LYSENKO E A,KLAUS A A,KARTASHOV A V,et al.Distribution of Cd and other cations between the stroma and thylakoids:A quantitative approach to the search for Cd targets in chloroplasts[J].Photosynthesis Research,2018,139(1/3):337-358.
相似文献/References:
[1]高荣侠.黄瓜幼苗对镉胁迫下外源一氧化氮与铁氰化钾的响应[J].北方园艺,2014,38(07):1.
GAO Rong-xia.Response of Exogenous Nitric Oxide and Potassium Ferricyanide Under Cadmium Stress in Cucumber Seedlings[J].Northern Horticulture,2014,38(12):1.
[2]肖丽,匡银近,覃彩芹.壳低聚糖浸种对镉胁迫下小白菜幼苗部分生理生化特性的影响[J].北方园艺,2012,36(17):27.
XIAO Li,KUANG Yin-jin,QIN Cai-qin.Influence of Oligochitosan on Some Physiological and Biochemical Characteristics of Chinese Cabbage under the Stress of Cadmium[J].Northern Horticulture,2012,36(12):27.
[3]申璐,贾云生,褚晓蕾,等.吉林市主要园林绿化树种对硫及氟的吸收固定研究[J].北方园艺,2012,36(21):76.
SHEN Lu,JIA Yun-sheng,CHU Xiao-lei,et al.Study on the Absorbition and Fixation to Sulfur and Fluorine of Main Garden Plants in Jilin City[J].Northern Horticulture,2012,36(12):76.
[4]胡博华,徐劼,段德超,等.镉胁迫下芹菜生理响应的傅里叶变换红外光谱研究[J].北方园艺,2015,39(15):11.[doi:10.11937/bfyy.201515003]
HU Bohua,XU Jie,DUAN Dechao,et al.Physiological Response of Celery (Apium graveolens L.) to Cadmium Stress by FTIR Spectroscopy[J].Northern Horticulture,2015,39(12):11.[doi:10.11937/bfyy.201515003]
[5]逄洪波,谷思雨,李玥莹,等.镉超富集植物耐镉性的分子机制研究进展[J].北方园艺,2015,39(19):170.[doi:10.11937/bfyy.201519043]
PANG Hongbo,GU Siyu,LI Yueying,et al.Research Progress on the Molecular Mechanism Underlying Cadmium Hyperaccumulation Tolerance[J].Northern Horticulture,2015,39(12):170.[doi:10.11937/bfyy.201519043]
[6]黄登峰,席嘉宾,赵运林.镉胁迫下两个多年生黑麦草品种的生理响应[J].北方园艺,2016,40(03):66.[doi:10.11937/bfyy.201603018]
HUANG Dengfeng,XI Jiabin,ZHAO Yunlin.The Physiological Response of Two Varieties of Lolium perenne Under Cadmium Stress[J].Northern Horticulture,2016,40(12):66.[doi:10.11937/bfyy.201603018]
[7]李 海 云,张 复 君,齐 辉,等.植 物 硫 营 养 研 究 进 展[J].北方园艺,2009,33(07):0.[doi:10.11937/bfyy.200907051]
LI Hai - yun,ZHANG Fu- jun,QI Hui,et al.Research Progress on Sulfur Nutrition of Plant[J].Northern Horticulture,2009,33(12):0.[doi:10.11937/bfyy.200907051]
[8]陈文志,邬梦晞,罗巧,等.两种表面活性剂对镉胁迫下龙葵生理特性的影响[J].北方园艺,2017,41(11):1.[doi:10.11937/bfyy.201711001]
CHEN Wenzhi,WU Mengxi,LUO Qiao,et al.Effects of Two Surfactants on Growth of Solanum nigrum L.Under Cadmium Stress[J].Northern Horticulture,2017,41(12):1.[doi:10.11937/bfyy.201711001]
[9]赵利清,彭向永,冀瑞卿.镉胁迫下三种观赏草的生理响应及对铜、锌离子的吸收特性[J].北方园艺,2017,41(15):72.[doi:10.11937/bfyy.20170248]
ZHAO Liqing,PENG Xiangyong,JI Ruiqing.Physiological Response and Copper and Zinc Absorption Characteristics of Three Ornamental Grasses Under Cadmium Stress[J].Northern Horticulture,2017,41(12):72.[doi:10.11937/bfyy.20170248]
[10]许良政,李诺,何桂玲,等.水茄幼苗钙、镁、硫缺素症的试验分析[J].北方园艺,2019,43(04):1.[doi:10.11937/bfyy.20182037]
XU Liangzheng,LI Nuo,HE Guiling,et al.Experiment and Analysis of Deficiency Symptoms of Calcium, Magnesium and Sulfur of Solanum torvum Seedlings[J].Northern Horticulture,2019,43(12):1.[doi:10.11937/bfyy.20182037]
备注/Memo
第一作者简介:梁魁景(1983-),男,硕士,讲师,现主要从事园林植物逆境生理等研究工作。E-mail:zwbh201011@163.com.责任作者:侯晓杰(1981-),女,博士,副教授,现主要从事园林植物病虫害防治等研究工作。E-mail:houxiaojie23@163.com.基金项目:河北省科技计划资助项目(15226505);2018年度高层次人才科研启动基金资助项目(2018GC13)。收稿日期:2020-01-17