MA Chi.Inversion of Soil Organic Matter Content Based on Sentinel-2A Remote Sensing Image[J].Northern Horticulture,2020,44(02):94-100.[doi:10.11937/bfyy.20191174]
基于Sentinel-2A遥感影像土壤有机质含量的反演研究
- Title:
- Inversion of Soil Organic Matter Content Based on Sentinel-2A Remote Sensing Image
- 关键词:
- Sentinel-2A; 遥感; 有机质; 反演; 回归分析
- Keywords:
- Sentinel-2A; remote sensing; organic matter; inversion; regression analysis
- 文献标志码:
- A
- 摘要:
- 利用Sentinel-2A遥感影像为数据源,结合德惠市、农安县土壤实地采样的有机质含量实验室化验值,反演研究区表层土壤有机质含量。首先,选取10个分辨率为10 m(20 m)的Sentinel-2A可见光、近红外及短波红外波段,并将遥感影像进行辐射校正与大气校正,消除大气对传感器成像的影响;然后,将各波段反射率与土壤有机质含量进行相关性分析,获得有机质敏感波段;最后,利用多元回归分析的方法建立研究区土壤有机质含量的反演模型,反演研究区表层土壤有机质含量。结果表明:Sentinel-2A遥感影像在可见光与近红外波段与土壤有机质含量具有良好的相关性,且在第6波段达到峰值,为r=-0.817;将反射率进行适当的数学变换后可以有效改善与有机质含量的相关性,其中,指数变换与有机质含量的相关性较好,相关系数为r=-0.867;利用多元回归分析方法建立的研究区土壤有机质含量反演模型SOM=26.31/R2-117.56eR4-9.74R8-1.48+145.89具有较高的模型精度与较好的模型稳定性,模型的决定系数达到R2=0.917,均方根误差为5.86 g·kg-1。
- Abstract:
- In this study,we utilized the remote sensing image of Sentinel-2A and combine the laboratory test value of the organic matter content in soil samples from Dehui city and Nong′an County to retrieved the soil organic matter content in the surface layer of the area.Firstly,select ten Sentinel-2A visible,near-infrared and short-wave infrared bands with a resolution of 10 m (20 m),and carried out radiation calibration and atmospheric calibration of the remote sensing images to eliminate the influence of the atmosphere on sensor imaging.Then,obtained the sensitive bands of organic matter through analyzing the correlation of the reflectance of each wave band and soil organic matter content.Finally,the inversion model of soil organic matter content was established by multiple regression analysis to research the soil organic matter content in the surface layer of the area.The results showed that the Sentinel-2A remote sensing images had a good correlation with the soil organic matter content in the visible and near-infrared bands,and reached a peak value of r=-0.817 in the sixth band.The correlation between the reflectivity and the organic matter content could be effectively improved after the appropriate mathematical transformation of the reflectivity.In addition,it was found that the excellent correlation was exhibited between the exponential transformation and the organic matter content,in which the correlation coefficient was r=-0.867.Moreover,the inversion model SOM=26.31/R2-117.56eR4-9.74R8-1.48+145.89 of soil organic matter content in the study area established by multiple regression analysis method possess the advantage of high accuracy and better stability,in which determination coefficient was up to R2=0.917,and the root mean square error was 5.86 g·kg-1.
参考文献/References:
[1]GALVAL L S,VITORELLO I.Variability of laboratory measured soil line of soil from southeastem Brazil[J].Remote Sensing of Environment,1998,63(2):166-181.[2]刘焕军,赵春江,王纪华,等.黑土典型区土壤有机质遥感反演[J].农业工程学报,2011,28(7):211-215.[3]李媛媛,李微,刘远,等.基于高光谱遥感土壤有机质含量预测研究[J].土壤通报,2014,45(6):1313-1318.[4]乔璐.哈尔滨城区土壤高光谱特性与TM遥感的定量反演[D].哈尔滨:东北林业大学,2010.[5]马驰.基于GF-1土壤含盐量的估测研究[J].干旱区资源与环境,2017,31(7):85-90.[6]栾福明,张小雷,熊黑钢,等.基于TM影像的荒漠-绿洲交错带土壤有机质含量反演模型[J].中国沙漠,2014,34(4):1080-1086.[7]潘嫄嫄,李长春,马潇潇,等.Sentinel-2A卫星大气校正方法及校正效果[J].遥感信息,2018,33(5):41-48.[8]DRUSCH M,BELLO U,CARLIER S,et al.Sentinel-2:ESA′s optical high-resolution mission for GMES operation services[J].Remote Sensing of Environment,2013,120:25-26.[9]GB 9834-88.中华人民共和国国家标准:土壤有机质测定法[S].北京:中华人民共和国农业部,1988.[10]顾晓鹤,王堃,潘瑜春,等.基于HJ1A-HSI超光谱影像的耕地有机质遥感定量反演[J].地理与地理信息科学,2011,27(6):70-73.[11]KAMIELI A,VERCHOVSKY I,HALL J K,et al.Geographic information system for semi-detailed mapping of soil in semi-arid region[J].Geocarto International,1998,13(3):29-42.[12]李润林,姚艳敏.基于TM影像和地形数据的土壤有机质空间分布[J].湖北农业科学,2014,53(2):312-316.[13]曾远文,陈浮,王雨辰,等.采煤矿区表层土壤有机质含量遥感反演[J].水土保持通报,2013,33(2):169-172.[14]程朋根,吴剑,李大军,等.土壤有机质高光谱遥感和地统计定量预测[J].农业工程学报,2009,25(3):142-147.[15]兰泽英,刘洋.乐安河流域土壤重金属含量高光谱间接反演模型及其空间分布特征研究[J].地理与地理信息科学,2015,31(3):26-31.[16]张法升,曲威,尹光华.基于多光谱遥感影像的表层土壤有机质空间格局反演[J].应用生态学报,2010,21(4):883-888.[17]丁美青,肖红光,陈松岭.基于BP神经网络的土地开发整理区土壤有机质含量遥感定量反演[J].湘潭大学自然科学学报,2012,34(2):103-106.
相似文献/References:
[1]闫海忠,杨树华,于福科.基于遥感技术的玉溪市生态环境敏感性评价研究[J].北方园艺,2013,37(09):99.
YAN Hai-zhong,YANG Shu-hua,YU Fu-ke.Evaluation of Sensitivity to Ecological Environment Based on RS in Yuxi City[J].Northern Horticulture,2013,37(02):99.
[2]邓雪纯,张绿水,刘纯青.以南昌市中心城区为例分析城市绿地植被覆盖度及景观格局[J].北方园艺,2021,(12):70.[doi:10.11937/bfyy.20203809]
DENG Xuechun,ZHANG Lyushui,LIU Chunqing.Taking Nanchang Center District as an Example to Analyze the Vegetation Coverage and Landscape Pattern of Urban Green Space[J].Northern Horticulture,2021,(02):70.[doi:10.11937/bfyy.20203809]
[3]马驰.基于Sentinel-2A遥感数据的土壤全磷含量定量反演研究[J].北方园艺,2022,(15):74.[doi:10.11937/bfyy.20220234]
MA Chi.Quantitative Inversion of Soil Total Phosphorus Content Based on Sentinel-2A Remote Sensing Data[J].Northern Horticulture,2022,(02):74.[doi:10.11937/bfyy.20220234]
备注/Memo
作者简介:马驰(1975-),男,博士,副教授,现主要从事RS与GIS应用等研究工作。E-mail:machi1001@sina.com.基金项目:国家自然科学基金资助项目(41371332);中国地质调查局资助项目(1212010911084);辽宁省交通高等专科学校资助项目(lnccybky201910)。收稿日期:2019-05-05