DU Zexuan,WU Jingchen,YANG Ruhua,et al.Single and Combined Effects of Vanadium,Titanium and Cadmium on the Physiology and Biochemistry of Marchantia polymorpha L.[J].Northern Horticulture,2019,43(08):73-81.[doi:10.11937/bfyy.20183217]
钒、钛、镉单一和联合胁迫对地钱生理生化的影响
- Title:
- Single and Combined Effects of Vanadium,Titanium and Cadmium on the Physiology and Biochemistry of Marchantia polymorpha L.
- Keywords:
- Marchantia polymorpha; vanadium (V); titanium (Ti) and cadmium (Cd); stress; physiological index
- 文献标志码:
- A
- 摘要:
- 以地钱(Marchantia polymorpha L.)为试材,采用喷洒金属溶液的方法,研究了0~20 d内稀有金属钒(V)和钛(Ti)单一胁迫以及V、Ti、镉(Cd)联合胁迫方式下地钱对3种金属的富集能力和生理指标的影响,以期探究地钱对V、Ti单一胁迫以及V-Ti-Cd联合胁迫的耐受性及其响应机理。结果表明:V、Ti单独胁迫地钱时,地钱对V的富集程度为(808.00±26.46)μg?g-1大于对Ti(766.67±62.31)μg?g-1的富集,2种金属胁迫下地钱生理指标变化趋势相同,0~20 d的胁迫时间内,可溶性蛋白质含量减少,可溶性糖含量增加,脯氨酸(Pro)含量减少,丙二醛(MDA)含量先增加后减少在12 d时最高,超氧化物歧化酶(SOD)活性先升高再降低再升高,过氧化氢酶(CAT)和过氧化物酶(POD)活性整体均增强,第20天时最强。V-Ti-Cd联合胁迫时,地钱对Cd的富集能力最强,达到(1 179.00±103.12)μg?g-1,而V、Ti的积累比单独胁迫时分别降低(243.00±27.87)μg?g-1和(349.33±55.05)μg?g-1,联合胁迫对V、Ti的积累表现出拮抗作用。Pro含量增加到12 d时最高后下降再升高,整体增加,而MDA含量增加,在第20天时含量最高,SOD活性增强以及CAT活性先增加后降低再升高,均在第20天达到最高,POD活性在第4天增加后降低并稳定。相比单独胁迫,短时间内复合胁迫对地钱产生的毒害作用更大。该结果为植物对多元金属复合胁迫的生理响应及耐受机制研究提供了一定的理论基础,也为富含钒钛磁铁矿地区的植被恢复提供新的途径。
- Abstract:
- In this study,Marchantia polymorpha L.were dealt with independent vanadium (V) and titanium (Ti) and joint V,Ti and cadmium (Cd) by spraying metal solution under different time gradient.In order to explore the tolerance of M.polymorpha to single stress of V,Ti and V-Ti-Cd combined stress and its response mechanism.The results showed that the contents of V (808.00±26.46)μg?g-1 was higher than Ti (766.67±62.31)μg?g-1 in M.polymorpha and the physiological index changes was similar,when M.polymorpha was treated with single V or Ti.Compared with the control group,it appeared that soluble protein contents were reduced,soluble sugar contents were increased,the contents of proline (Pro) were decreased,malondialdehyde (MDA) contents were increased at first then cut down and were reached the top on the 12th day,superoxide dismutase (SOD) activity was increased at first then decreased and was increased again,catalase (CAT) activity and peroxidase (POD) activity was increased to the top on the 20th day.Furthermore,when M.polymorpha was threatened by V-Ti-Cd simultaneously,the maximum contents of Cd (1 179.00±103.12)μg?g-1 and the contents of V (243.00±27.87)μg?g-1 and Ti (349.33±55.05)μg?g-1 were restrained significantly.Pro contents were increased to the top on the 12th day then were decreased and increased again.MDA contents were increased,SOD activity was enhanced,CAT was activity enhanced at first then was decreased and enhanced again.POD activity was enhanced on the 4th day then reduced and stabilized.Compared with the single stress,the combined stress had more toxic effect on the M.polymorpha in a short time.These results could provide new ways for vegetation recovery in vanadium titano-magnetite region,as well as provide a theoretical basis for studying the tolerance of plants for multiple metal stresses.
参考文献/References:
[1]孙天国,沙伟,刘岩.复合重金属胁迫对两种藓类植物生理特性的影响[J].生态学报,2010,30(9):2332-2339.[2]IMTIAZ M,ASHRAF M,RIZWAN M S,et al.Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil:Effects on cell death,ROS and antioxidative systems[J].Ecotoxicology & Environmental Safety,2018,158:139.[3]CLEMENS S.Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2001,212(4):475-486.[4]AMM I,SOMMER T,WOLF D H.Protein quality control and elimination of protein waste:The role of the ubiquitin-proteasome system[J].Biochim Biophys Acta,2014,1843(1):182-196.[5]KURTYKA R,BURDACH Z,SIEMIENIUK A,et al.Single and combined effects of Cd and Pb on the growth,medium pH,membrane potential and metal contents in maize (Zea mays L.) coleoptile segments[J].Ecotoxicology & Environmental Safety,2018,161:8-16.[6]DAZY M,MASFARAUD J F,FLRARD J F.Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw[J].Chemosphere,2009,75(3):297-302.[7]侯明,陈国勇,梁福晓,等.钒胁迫对水稻幼苗生理生化和富集特性的影响[J].生态环境学报,2014(10):1657-1663.[8]COX A,VENKATACHALAM P,SAHI S,et al.Silver and titanium dioxide nanoparticle toxicity in plants:A review of current research[J].Plant Physiology & Biochemistry,2016,107:147.[9]杨金燕,唐亚,李廷强,等.我国钒资源现状及土壤中钒的生物效应[J].土壤通报,2010,41(6):1511-1517.[10]谭晓娟.攀枝花钒钛矿区植被群落调查及植物金属含量分析研究[D].成都:四川农业大学,2009.[11]DAI H P,SHAN C J,JIA G L,et al.Responses to cadmium tolerance,accumulation and translocation in Populus×canescens[J].Water Air & Soil Pollution,2013,224(4):1504.[12]KELTJENS W G,BEUSICHEM M L V.Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.):Combined effects of copper and cadmium[J].Plant & Soil,1998,203(1):119-126.[13]GIMINGHAM C H,BIRSE E M.Ecological studies on growth-form in bryophytes:Correlations between growth-form and habitat[J].Journal of Ecology,1957,45(2):533-545.[14]朱华,肖建波,钟世安,等.地钱总黄酮提取的研究[J].林产化学与工业,2004,24(2):69-72.[15]BRIGGS D.Population differentiation in Marchantia polymorpha L.in various lead pollution levels[J].Nature,1972,238(5360):166-167.[16]陈肖鹏,张朝晖.地钱对木油厂汞矿区重金属污染的指示潜力[J].环境污染与防治,2010,32(10):24-28.[17]BRADFORD M.A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of proteindye binding[J].Analytical Biochemistry,1976,72(S1-2):248-254.[18]胡国涛,杨兴,陈小米,等.速生树种竹柳对重金属胁迫的生理响应[J].环境科学学报,2016,36(10):3870-3875.[19]JOHN R,AHMAD P,GADGIL K,et al.Effect of cadmium and lead on growth,biochemical parameters and uptake in Lemna polyrrhiza L.[J].Plant Soil & Environment,2008,54(6):262-270.[20]CHOUDHARY M,JETLEY U K,ABASH K M,et al.Effect of heavy metal stress on proline,malondialdehyde,and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5[J].Ecotoxicology & Environmental Safety,2007,66(2):204-209.[21]HOLY M,LEBLOND S,PESCH R,et al.Assessing spatial patterns of metal bioaccumulation in French mosses by means of an exposure index[J].Environmental Science & Pollution Research International,2009,16(5):499.[22]CARBALLEIRA C B,ABOAL J R,FERNNDEZ J A,et al.Comparison of the accumulation of elements in two terrestrial moss species[J].Atmospheric Environment,2008,42(20):4904-4917.[23]余俊.单一及复合污染胁迫下美人蕉对重金属铜、镉、铅的富集与耐性研究[D].广州:广东工业大学,2012.[24]NGELA A,ITOUGA M,KATO Y,et al.Differential metal tolerance and accumulation patterns of Cd,Cu,Pb and Zn in the liverwort Marchantia polymorpha L[J].Bulletin of Environmental Contamination & Toxicology,2018,100(3):444-450.[25]SHAHNAZ G,SHEKOOFEH E,KOUROSH D,et al.Interactive effects of silicon and aluminum on the malondialdehyde (MDA),proline,protein and phenolic compounds in Borago officinalis L[J].Journal of Medicinal Plant Research,2011,5(24):5818-5827.[26]URU P K,DEMIREZEN Y D.Response of antioxidant defences to Zn stress in three duckweed species[J].Ecotoxicology & Environmental Safety,2012,85(11):52.[27]侯明,赵军平,熊玲,等.钒胁迫下枸杞和芥菜叶蛋白含量的变化[J].桂林理工大学学报,2016,36(2):344-348.[28]郭晓音.重金属Zn、Cd复合胁迫对秋茄幼苗生长及渗透调节物质的影响[D].福建:厦门大学,2009.[29]张家洋.重金属铅镉短期胁迫对蓬莱蕉生理生化指标的影响[J].水土保持学报,2016,30(2):340-345.[30]李培广,周海燕,陈翠云,等.阿拉善荒漠优势植物可溶性糖的季节变化[J].生态学杂志,2012,31(12):3018-3023.[31]朱虹,祖元刚,王文杰,等.逆境胁迫条件下脯氨酸对植物生长的影响[J].东北林业大学学报,2009,37(4):86-89.[32]张浩,陆宁,钱晓刚,等.不同类型土壤重金属胁迫对烟叶脯氨酸含量的影响[J].贵州农业科学,2014(1):127-131.[33]姜虎生,石德成.Hg、Cd复合污染对玉米生理指标的影响[J].陕西农业科学,2005(6):7-9.[34]SKRZYN〖JX-+0.8mm〗〖KG-1.8mm〗'〖JX+0.8mm〗 SKAPOLIT E.Lipid peroxidation in plant cells,its physiological role and changes under heavy metal stress[J].Acta Societatis Botanicorum Poloniae,2007,76(1):49-54.[35]赵婷.灯心草对土壤重金属钒、钛、钼、镍、锰污染的抗性研究[D].长沙:湖南农业大学,2007.[36]黄玉山,罗广华,关棨文.镉诱导植物的自由基过氧化损伤[J].Acta Botanica Sinica,1997(6):522-526.[37]KANDZIORACIUPA M,CIEPA R,NADGRSKASOCHA A,et al.A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L.leaves in polluted and non-polluted areas[J].Environmental Science & Pollution Research International,2013,20(7):4920-4932.[38]SHARMA P,JHA A B,DUBEY R S,et al.Reactive oxygen species,oxidative damage and antioxidative defense mechanism in plants under stressful conditions[J].Journal of Botany,2012:1-36.[39]EMAMVERDIAN A,DING Y,MOKHBERDORAN F,et al.Heavy metal stress and some mechanisms of plant defense response[J].Scientific World Journal,2015(4):756120.[40]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,2003,19(2):103-108.[41]VAN C W,CAPIAU K,VAN M M,et al.Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts[J].Plant Physiology,1996,112(4):1703.[42]杨小琴,赵运林,孙玉珍.凤仙花生物量及抗氧化酶系统对重金属铅胁迫的生理响应[J].安徽农业科学,2008,36(9):3526-3528.[43]龙瑞,张明,张光生,等.Mn、Cd单一及其复合胁迫对伊乐藻生长及生理生化的影响[J].农业环境科学学报,2014,33(6):1112-1117.[44]RADWAN D E M,FAYEZ K A,MAHMOUD S Y,et al.Modifications of antioxidant activity and protein composition of bean leaf due to bean yellow mosaic virus,infection and salicylic acid treatments[J].Acta Physiologiae Plantarum,2010,32(5):891-904.[45]郭零,侯明.钒胁迫对芥菜生理特性的影响[J].桂林理工大学学报,2010,30(4):617-620.[46]王强.重金属对苔藓植物影响的研究进展[J].北方园艺,2014(10):169-173.[47]曾元元,娄玉霞,曹同.匍枝青藓(Brachythecium procumbens)对铅胁迫的生理响应[J].上海师范大学学报(自然科学版),2010,39(5):544-550.
备注/Memo
第一作者简介:杜泽萱(1995-),女,硕士研究生,研究方向为苔藓植物资源保护及利用。E-mail:kkxndzx@163.com.责任作者:王丽(1969-),女,博士,教授,现主要从事资源植物学等研究工作。E-mail:yzxj@vip.163.com.基金项目:四川省科技厅重点研发资助项目(2017SZ0186)。收稿日期:2018-12-03