ZHANG Haixin,Tana,KANG Hongyuan.Experiment and Simulation of Soil Temperature at Edge Area in Solar Greenhouse[J].Northern Horticulture,2017,41(05):41-48.[doi:10.11937/bfyy.201705010]
日光温室边际土壤温度试验及模拟研究
- Title:
- Experiment and Simulation of Soil Temperature at Edge Area in Solar Greenhouse
- Keywords:
- inner arch; solar greenhouse; marginal effect; CFD simulation
- 文献标志码:
- A
- 摘要:
- 以内蒙古标准“三立一坡”型日光温室为研究对象,对距离南侧边际0~350 cm,深0~55 cm范围内的土壤温度进行实测,绘制了有内拱棚以及无内拱棚测试土壤层温度特性曲线,并分析了土壤温度边际效应随外界环境变化的规律,同时建立一种含有内拱棚的日光温室南侧区域土壤温度计算模型。结果表明:除南侧边际10 cm测点外,内拱棚的增加对5 cm土壤层温度平均提升1.7 ℃左右,对25 cm处土壤层温度平均提升1 ℃左右,而对于深度55 cm处的土壤温度几乎没有影响。在距南侧边际70 cm处增加内拱棚,不仅有效推迟边际界点内移,而且当室外温度降至均值-18 ℃,含拱棚的日光温室边际界点比不含内拱棚的小于60 cm左右。采用Gambit建立模型,运用流体力学CFD(computational fluid dynamics)模拟含内拱棚不同土壤层温度,此模型能够较准确的模拟日光温室南侧边际不同层土壤温度,为种植作物提供有效理论依据。
- Abstract:
- The Inner Mongolia standard ‘three vertical and one slope’ type solar greenhouse was used as research object.On the south side of the distance of 0-350 cm,the depth of 0-55 cm range of soil temperature measured,the inner arch shed as well as no internal arch shed to test the temperature characteristic curve of soil layer.The effect of soil temperature on the change of soil temperature was analyzed,and the calculation model of soil temperature on the south side of solar greenhouse with internal arch roof was established.The results showed that,in addition to the south marginal 10 cm measuring point,the increase of 5 cm in greenhouse soil layer average temperature increased 1.7 ℃,the temperature at 25 cm soil layer increased 1 ℃,and there was almost no effect on soil temperature at 55 cm depth;the increase from the south side of 70 cm in the marginal shed,not only effectively delayed the marginal points,and when the outdoor temperature was -18 ℃ to mean,with the marginal points in greenhouse shed than without inner arch shed less than about 60 cm.Gambit (computational fluid dynamics CFD) was used to simulate the temperature of different soil layers in the inner arch shed.The model could accurately simulate the soil temperature of different layers on the south side of sunlight greenhouse and to provide the effective basis for planting crops.
参考文献/References:
[1]塔娜,五十六,马文娟,等.不同含水率下日光温室土壤温度变化规律的峰拟合法拟合[J].农业工程学报,2014,30(20):204-210. [2]张翠华,张文煜.浅层地温变化对石家庄农作物生长的影响[J].西北农林科技大学学报(自然科学版),2013,41(7):51-59. [3]费晓玲,丁春兰.甘肃黄土高原地温与冬小麦发育期的关系分析[J].干旱气象,2009,27(2):148-151. [4]杜心田,王同朝.作物群体边际效应规律及其应用[J].应用生态学报,1998,5(9):475-480. [5]孙治强,孙丽,王谦,等.日光温室土壤温度环境边际效应[J].农业工程学报,2009,25(5):150-155. [6]王思倩,张志录,侯伟娜,等.下沉式日光温室南侧边际区域土壤温度变化特征[J].农业工程学报,2012,28(8):235-240. [7]王春燕,陈秋波,袁坤,等.橡胶林土壤呼吸速率及其与土壤温湿度的关系[J].土壤学报,2013,50(5):974-982. [8]魏镛频,王姣敏.日光温室内小拱棚对蔬菜育苗的影响[J].甘肃农业,2014(21):71-74. [9]巩玉玲,王兆锋,张镱锂,等.拉萨灌丛草甸区土壤温度变化特征[J].土壤学报,2016,53(2):411-420. [10]霍颖君.巨型塑料大棚边际效应初步研究[D].郑州:河南农业大学,2009:10-14. [11]白义奎,李天来.日光温室地基温度场数学模型及试验分析[J].北方园艺,2010(13):49-53. [12]金玲,刘妍华.CFD 在温室室内环境研究中的应用[J].安徽农业科学,2012(7):44164418. [13]吴乐天,马彩雯.新疆标准化日光温室热环境实测与模拟分析[J].新疆农业科学,2013,50(5):924-930. [14]徐凡,马承伟.温室环境分析中冬季室外气温日变化及数学表达[J].农业工程学报,2013,29(12);203-209. [15]FITZ-RODRGUEZ E,CHIERI K,GENE A G,et al.Dynamic modeling and simulation of greenhouse environments under several scenarios:A web-based application[J].Computers and Electronics in Agriculture,2010,70(1):105-116. [16]IMPRON I,HEMMING S,BOT G P A.Simple greenhouse climate model as a design tool for greenhouses in tropical lowland[J].Biosystems Engineering,2007,98(1):79-89. [17]塔娜,陈斌,五十六,等.基于 CFD 的寒冷干旱地区日光温室温度场模拟分析[J].内蒙古农业大学学报(自然科学版),2015,36(1):77-81. [18]王润涛,段明辉,杨方,等.冬季日光温室温度场优化研究[J].东北农业大学学报,2014,45(10):101-106. [19]张起勋,于海业,张忠元,等.利用CFD 模型研究日光温室内的空气流动[J].农业工程学报,2012,28(16):166-171. [20]五十六.日光温室内水热耦合环境的试验研究与数值模拟[D].呼和浩特:内蒙古农业大学,2015. [21]毕玉革.干寒地区日光温室土壤热环境模拟及试验研究[J].内蒙古农业大学学报,2013,34(6):120-125. [22]吴飞青.温室冬季热环境数值分析与实验研究[D].杭州:浙江工业大学,2010.
相似文献/References:
[1]田 蕾,张雪艳,宗庆姝.宁夏日光温室樱桃番茄品种筛选[J].北方园艺,2014,38(12):36.
TIAN Lei,ZHANG Xue-yan,ZONG Qing-shu.Comparison of Cherry Tomato Varieties in Solar Greenhouse in Ningxia[J].Northern Horticulture,2014,38(05):36.
[2]吕 涛,于 杰,赵 勇.日光温室越冬栽培番茄适宜品种筛选试验[J].北方园艺,2014,38(12):40.
LV Tao,YU Jie,ZHAO Yong.Selection of Overwintering Tomato Varieties Suitable for Solar Greenhouse in Heilongjiang[J].Northern Horticulture,2014,38(05):40.
[3]张力飞.无花果“麦司依陶芬”日光温室栽培新技术[J].北方园艺,2014,38(12):43.
[4]程春霞.西宁地区日光温室丝瓜引种品比试验[J].北方园艺,2014,38(13):37.
CHENG Chun-xia.Variety Comparison Test of Introduced Towel Grourd Cultivars in Solar Greenhouse in Xining District[J].Northern Horticulture,2014,38(05):37.
[5]陈建军,王正义,陈海洋.宁夏日光温室与塑料大棚环境对比分析[J].北方园艺,2014,38(10):36.
CHEN Jian-jun,WANG Zheng-yi,CHEN Hai-yang.Comparative Analysis on Environment in a Solar Greenhouse and Plastic Greenhouse in Ningxia[J].Northern Horticulture,2014,38(05):36.
[6]王国东.北方地区日光温室栽培状态下西番莲生长动态研究[J].北方园艺,2014,38(10):40.
WANG Guo-dong.Study on Growth Dynamic of the Passion Fruit in Solar Greenhouse in Northern Area[J].Northern Horticulture,2014,38(05):40.
[7]王文平.肃州区非耕地日光温室葡萄反季节高效节水栽培技术[J].北方园艺,2014,38(10):43.
[J].Northern Horticulture,2014,38(05):43.
[8]白青华,马红勇,殷雪莲,等.低温期不同结构日光温室温度变化及其对樱桃番茄生长的影响[J].北方园艺,2013,37(22):59.
BAI Qing-hua,MA Hong-yong,YIN Xue-lian,et al.Temperature Changes in Solar Greenhouses with Different Structures in the Low Temperature Period and Its Effect on Growth of Cherry Tomatoes[J].Northern Horticulture,2013,37(05):59.
[9]何志刚,王秀娟,董 环,等.秸秆反应堆和功能菌对日光温室番茄生长发育及土壤微生态环境的影响[J].北方园艺,2013,37(22):184.
HE Zhi-gang,WANG Xiu-juan,DONG Huan,et al.Effects of Straw Reactors and Function Microorganism on Growth and Soil Micro-eco-environment of Tomato[J].Northern Horticulture,2013,37(05):184.
[10]何斌,王宏丽,邹志荣.内蒙古乌海非耕地日光温室建筑与结构设计[J].北方园艺,2014,38(04):41.
HE Bin,WANG Hong-li,ZOU Zhi-rong.Architectural and Structural Design of Solar Greenhouse in Inner Mongolia Wuhai Non-cultivated Land[J].Northern Horticulture,2014,38(05):41.
备注/Memo
第一作者简介:张海鑫(1989-)男,陕西咸阳人,硕士研究生,研究方向为农业工程及计算流体力学。E-mail:1329470909@qq.com.基金项目:国家自然科学基金资助项目(61364021)。