DONG Liang,LEI Liangyu,LI Xueyuan,et al.Weed Identification Technology of Greenhouse Vegetable Crops inGreenhouse Based on Improved Artificial Neural Network[J].Northern Horticulture,2017,41(22):79-82.[doi:10.11937/bfyy.20163690]
基于改进型人工神经网络的温室大棚蔬菜作物苗期杂草识别技术
- Title:
- Weed Identification Technology of Greenhouse Vegetable Crops inGreenhouse Based on Improved Artificial Neural Network
- Keywords:
- neural network; improvement; greenhouse; weed identification
- 文献标志码:
- A
- 摘要:
- 温室大棚在蔬菜培育中有着广泛应用,在高效生产的同时,除草问题亟待解决。该设计采用一种改进型的人工神经网络算法应对大棚作物苗期杂草识别,通过对遗传算法的神经元参数的优化,以减少错误的发生次数。结果表明:与采用径向基核函数的支持向量机算法相比较,改进型人工神经网络算法识别正确率更高,达到94%以上,可为进一步的除草机器人开发提供技术支持。
- Abstract:
- The greenhouse has been widely used in the cultivation of vegetables,in the production of high efficiency,weed control problems need to be solved urgently.The design was used an improved artificial neural network algorithm to deal with the weed identification in the seedling stage,and the optimization of the parameters of the genetic algorithm in order to reduce the number of errors.The results showed that with the radial basis kernel function of support vector machine algorithm,improved artificial neural network algorithm to identify the correct rate was more high,more than 94% and high efficiency of identification could provide technical support for further weeding robot development.
参考文献/References:
[1]张琨,王新宇,王志强.田间杂草的危害及防治技术[J].现代农业,2011(9):40-41.
备注/Memo
第一作者简介:董亮(1990-),男,江苏溧阳人,硕士研究生,研究方向为智能检测与控制技术。E-mail:dongliang1990@foxmail.com.