YE Lu,LI Yuping,QIN Xiaoli,et al.Vegetables Price Combination Forecasting Based on PSO-BP and RBF Neural Network[J].Northern Horticulture,2015,39(21):212-215.[doi:10.11937/bfyy.201521055]
基于PSO-BP与RBF神经网络的蔬菜价格组合预测
- Title:
- Vegetables Price Combination Forecasting Based on PSO-BP and RBF Neural Network
- Keywords:
- PSO; BP neural network; RBF neural network; vegetables price; linear combination forecasting
- 文献标志码:
- A
- 摘要:
- 为准确预测蔬菜市场价格走势,现选取海南省儋州市2012—2015年117组青椒旬零售价格及相关因素的旬价格为样本数据,其中100组作为训练数据,17组数据作为测试数据,分别建立基于粒子群算法优化BP神经网络的蔬菜价格预测模型和基于RBF神经网络的蔬菜价格预测模型,并在这2种模型的基础上建立蔬菜价格的线性组合预测模型。结果表明:2种单项预测模型在蔬菜价格预测上的应用效果都较好,且在不同评价指标上各有优势。将这2种模型的预测结果进行线性组合,可以使各单项模型优势互补,拟合效果明显优于各单项预测模型。
- Abstract:
- In order to predict vegetables price accurately,117 groups 2012—2015 green pepper and related factors price in danzhou city were selected as the sample data,of which 100 groups were training data and 17 groups were test data,the PSO-BP forecasting model and the RBF network forecasting model concerning vegetables retail price were set up separately,and then the linear combination forecasting model was set up on the basis of these two models.The results indicated that these two single forecasting models’ effect was well,and two models had their own advantages in different evaluation index.The linear combination of the prediction results of these two models could make single model’s advantage complementary,whose fitting effect was better than the single forecasting model.
参考文献/References:
[1]李干琼,许世卫,李哲敏,等.农产品市场价格超短期预测研究:基于西红柿日批发价格的现代时间序列法建模[J].华中农业大学学报(社科版),2010(6):40-45. [2]张劲珊,谢祥添.基于人工神经网络蔬菜价格预测[J].江苏商论,2011(4):47-48,60. [3]孙素芬,罗长寿.基于RBF神经网络的蔬菜价格预报研究[J].中国农学通报,2011,27(28):269-273. [4]罗长寿.基于神经网络与遗传算法的蔬菜市场价格预测方法研究[J].科技通报,2011,27(6):881-885,894. [5]崔利国,李哲敏.不同优化方法的混沌RBF神经网络模型对大白菜短期价格预测的结果比较[J].系统科学与数学,2013,33(1):45-54. [6]王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013. [7]王亮,张宏伟,岳琳,等.PSO-BP模型在城市用水量短期预测中的应用[J].系统工程理论与实践,2007(9):165-170. [8]赵振江.基于PSO-BP神经网络的网络流量预测与研究[J].计算机应用与软件,2009,26(1):218-221. [9]张志政,周威.基于PSO-BP神经网络的参考作物蒸腾量预测[J].节水灌溉,2014,26(11):87-90,95. [10]闫纪如.粒子群优化的神经网络在交通流预测中的应用[D].沈阳:东北大学,2013:36-47. [11]张德丰.MATLAB神经网络编程[M].北京:化学工业出版社,2011. [12]丁咏梅.我国股票价格的组合预测[D].武汉:华中科技大学,2005.
相似文献/References:
[1]柳芳,陈思宁,李春,等.天津市日光温室热量资源评价及其茬口搭配标准[J].北方园艺,2018,42(09):93.[doi:10.11937/bfyy.20174363]
LIU Fang,CHEN Sining,LI Chun,et al.Evaluation of Heat Resources and Crop Collocation Standard of Solar Greenhouse in Tianjin[J].Northern Horticulture,2018,42(21):93.[doi:10.11937/bfyy.20174363]
[2]赵亚威,于洋,殷菲鹤,等.温室环境与叶类蔬菜生长态势模型研究[J].北方园艺,2020,44(17):137.[doi:10.11937/bfyy.20194858]
ZHAO Yawei,YU Yang,YIN Feihe,et al.Study on Greenhouse Environment and Growth Situation Model of Leaf Vegetables[J].Northern Horticulture,2020,44(21):137.[doi:10.11937/bfyy.20194858]
备注/Memo
第一作者简介:叶露(1985-),女,硕士,助理研究员,现主要从事热带农业信息等研究工作。E-mail:rkyyelu@163.com.基金项目:海南省自然科学基金资助项目(714281)。