PANG Hongbo,GU Siyu,LI Yueying,et al.Research Progress on the Molecular Mechanism Underlying Cadmium Hyperaccumulation Tolerance[J].Northern Horticulture,2015,39(19):170-174.[doi:10.11937/bfyy.201519043]
镉超富集植物耐镉性的分子机制研究进展
- Title:
- Research Progress on the Molecular Mechanism Underlying Cadmium Hyperaccumulation Tolerance
- 文献标志码:
- A
- 摘要:
- 土壤中的镉污染已经成为威胁生态系统和人类健康的严重环境问题。植物修复是一种绿色、经济、生态友好的土壤修复技术,超富集植物由于在植物修复中的巨大应用价值而备受关注。了解镉超富集植物的分子调控机制,对于Cd土壤修复具有重要理论指导意义。该文综述了国内外镉超富集植物耐镉性分子机制的研究现状,并对存在的问题和研究前景进行了展望。
- Abstract:
- Contamination of soil by cadmium was a severe environmental problem,which represented a direct contact risk to humans and ecological recipients.Phytoremediation had been regarded as a suitable technique for the pollution control of heavy-metal contaminated soil for green,safe technology and the properties of efficiency,economy and ecological harmony.Hyperaccumulators had recently gained considerable interest because of their potential use in phytoremediation.Understanding the molecular mechanisms of hyperaccumulation may help in enhancing the performance of hyperaccumulators for phytoremediation.This paper reviewed recent insights and existing problems of hyperaccumulators,and the directions of research in this area were introduced.
参考文献/References:
[1]CLEMENS S.Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2001,212:475-486. [2]HALL J L.Cellular mechanisms for heavy metal detoxification and tolerance[J].Journal of Experimental Botany,2002,53:1-11. [3]DALCORSO G,FARINATI S,FURIN A.Regulatory networks of cadmium stress in plants[J].Plant Signaling and Behavior,2010,5:663-667. [4]LIN Y F,AAERS M.The molecular mechanism of zinc and cadmium stress response in plants[J].Cellular and Molecular Life Science,2012,69:3187-3206. [5]KIM D Y,BOVET L,MAESHIMA M,et al.The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J].Plant Journal,2007,50:207-218. [6]SHIM D,HWANG J U,LEE J,et al.Orthologues of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J].Plant Cell,2009,21:4031-4043. [7]SATARUG S,GARRETT S H,SENS M A,et al.Cadmium,environmental exposure,and health outcomes[J].Environmental Health Perspectives,2010,118(2):182-190. [8]NAWROT T,NAWROT T,PLUSQUIN M,et al.Environmental exposure to cadmium and risk of cancer:a prospective population-based study[J].Lancet Oncology,2006,7(2):119-126. [9]CHANEY R L,LI Y M,ANGLE J S,et al.ImProving metal hyper accumulator wild Plants to develop commercial Phy-toextraction systems:Approaches and Progress In:Terry N and Bacuelos G.S.eds.Phytoremediation of Trace Elements[M].Miami:USA Ann Arbor Press,1999. [10]CHANEY R L,MALIK M,LI Y M,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology,1997,8(3):279-284. [11]CHANEY R L,ANGLE J S,MCINTOSH M S,et al.Using hyperaccumulator plants to phytoextract soil Ni and Cd[J].Zeitschrift Naturforschung,2005,60:190-198. [12]PILON-SMITS E.Phytoremediation[J].Annual Review of Plant Biology,2005,56:15-39. [13]BAKER A J M,BROOKS R R.Terrestrial higher plants which hyperaccumulate metallic elements.A review of their distribution,ecology and phytochemistry[J].Biorecovery,1989,1:81-126. [14]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004. [15]BROOKS R R.Plants that Hyperaccumulate heavy metals:their role in phytoremediatin,microbiology,archaeology,mineral exploration and phytomining[M].Oxford,UK:CAB International,1998. [16]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72. [17]BROWN S L,CHANEY R L,ANGLE J S,et al.Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J].Journal of Environmental Quality,1994,23:1151-1157. [18]WENZEL W W,JOCKWER F.Accumulator of heavy metals in plants grown on mineralised soils of the Austrian Alps[J]. Environmental Pollution,1999,104:145-155. [19]DAHMANI-MULLER H,VAN OORT F,GLIE B,et al.Strategies of heavy metal uptake by three plant species growing nearametal smelter[J].Environmental Pollution,2000,19:231-238. [20]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis):一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049. [21]熊愈辉,杨肖娥,叶正钱,等.东南景天对镉、铅的生长反应与积累特性比较[J].西北农林科技大学学报(自然科学版),2004,32(6):101-106. [22]YANG X E,LONG X X,YE H B,et al.Cadmium tolerance and hyperaccumulation in a new n-hyperaccumulating plant species (Sedum alfredii Hance) [J].Plant and Soil,2004,259:181-189. [23]魏树和,周启星,王林,等.一种新发现的镉超积累植物龙葵(Solanum nigrum L.) [J].科学通报,2004,49(24):2568-2570. [24]TOLR R,PONGRAC P,POSCHENRIEDER C,et al.Distinctive effects of cadmium on glucosinolate profiles in Cd hyper accumulator Thlaspi praecox and non-hyper accumulator Thlaspi arvense[J].Plant Soil,2006,288:333-341. [25]WEI S H,ZHOU Q X.Phytoremediation of cadmium-conta mina ted soils by Rorippa globosa using two-phase planting [J].Environmental Science and Pollution Research,2006,13:151-155. [26]聂发辉.镉超富集植物商陆及其富集效应[J].生态环境,2006,15(2):303-306. [27]SUN Y B,ZHOU Q X,LIU W T,et al.Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation:a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L[J].Journal of Hazardous Materials,2009,165:1023-1028. [28]PILON-SMITS E,PILON M.Phytoremedk isolation of metals using transgenic plants[J].Critical Reviews in Plant Sciences,2002,21:439-456. [29]XU J,SUN J,DU L,et al.Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum[J].New Phytologist,2012,96:110-124. [30]WEBER M,TRAMPCZYNSKA A,CLEMENS S.Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri[J].Plant,Cell and Environment,2006,29:950-963. [31]陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社,2008. [32]VERBRUGGEN N,HERMANS C,SCHAT H.Molecular mechanisms of metal hyperaccumulation in plants[J].New Phytologist,2009,181:759-776. [33]UENO D,YAMAJI N,KONO I,et al.Gene limiting cadmium accumulation in rice[J].Proceedings of the National Academy of Sciences USA,2010,107 (38):16500-16505. [34]PENCE N S,LARSEN P B,EBBS S D,et al.The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J].Proceedings of the National Academy of Sciences USA,2000,97:4956-4960. [35]SHIRAISHI E,INOUHE M,JOHO M,et al.The cadmium-resistant gene,CAD2,which is a mutated putative copper-transporter gene (PCA1),controls the intracellular cadmium-level in the yeast S.cerevisiae[J].Current Genetics,2000,37:79-86. [36]LEE S,MOON J S,KO T S,et al.Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress[J].Plant Physiology,2003a,131:656-663. [37]LEE S,PETROS D,MOON J S,et al.Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation[J].Plant Physiology and Biochemistry,2003b,41:903-910. [38]MILLS R F,KRIJGER G C,BACCARINI P J,et al.Functional expression of AtHMA4,a P1B-type ATPase of the Zn/Co/Cd/Pb subclass [J].Plant Journal,2003,35:164-176. [39]GRAVOT A,LIEUTAUD A,VERRET F,et al.AtHMA3,a plant P1B-ATPase,functions as a Cd/Pb transporter in yeast[J].FEBS Letters,2004,61:22-28. [40]SONG W Y,MARTINOIA E,LEE J,et al.A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis[J]. Plant Physiology,2004,135:1027-1039. [41]KIM D Y,BOVET L,KUSHNIR S,et al.AtATM3 is involved in heavy metal resistance in Arabidopsis[J].Plant Physiology,2006,140:922-932. [42]GUO W J,MEETAM M,GOLDSBROUGH P B.Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance[J].Plant Physiology,2008,146:1697-1706. [43]LOCHLAINN S,BOWEN H C,FRAY R G,et al.Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens[J/OL].PLoS One,2011,6:e17814. [44]PARK J,SONG W Y,KO D,et al.The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J].Plant Journal,2012,69:278-288. [45]SASAKI A,YAMAJI N,YOKOSHO K,et al.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J].Plant Cell,2012,24:2155-2167. [46]CHEN J,YANG L B,GU J,et al.MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana[J].New Phytologist,2015,205(2):570-582. [47]BECHER M,TALKE I N,KRALL L,et al.Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri[J].Plant Journal,2004,37(2):251-268. [48]HANIKENNE M,TALKE I N,HAYDON M J,et al.Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4[J].Nature,2008,453:391-395. [49]BARABASZ A,KRA¨MER U,HANIKENNE M,et al.Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply[J].Journal of Experimental Botany,2010,61:3057-3067. [50]BARABASZ A,WILKOWSKA A,RUSZCZYN′SKA A,et al.Metal response of transgenic tomato plants expressing P1B-ATPase[J].Physiologia Plantarum,2012,145:315-331. [51]SIEMIANOWSKI O,MILLS R F,WILLIAMS L E,et al.Expression of the P1B-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance[J].Plant Biotechnolog-y Journal,2011,9:64-74. [52]OZSOLAK F,MILOS P M.RNA sequencing:advances,challenges and opportunities[J].Nature Reviews Genetics,2011,12(2):87-98. [53]HERBETTE S,TACONNAT L,HUGOUVIEUX V,et al.Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots[J].Biochimie,2006,88:1751-1765. [54]ROMERO-PUERTAS M C,CORPAS F J,RODRIGUEZ-SERRANO M,et al.Differential expression and regulation of antioxidative enzymes by cadmium in pea plants[J].Journal of Plant Physiology,2007,164:1346-1357. [55]TAMAS L,DUDIKOVA J,DURCEKOVA K,et al.Alterations of the gene expression,lipid peroxidation,proline and thiol content along the barley root exposed to cadmium[J].Journal of Plant Physiology,2008,165:1193-1203. [56]CAO F,CHEN F,SUN H,et al.Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley[J].BMC Genomics,2014,15:611. [57]GAO J,SUN L,YANG X,et al.Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance[J/OL].PLoS One,2014,8:e64643. [58]TANG M,MAO D,XU L,et al.Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings[J]. BMC Genomics,2014,15:835. [59]WEI W,ZHANG Y,HAN L,et al.A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco[J].Plant Cell Reports,2008,27:795-803. [60]JACOBY M,WEISSHAAR B,VICENTE-CARBAJOSA J,et al.bZIP transcri-ption factors in Arabidopsis[J].Trends in Plant Science,2002,7:106-111. [61]TANG W,CHARLES T M,NEWTON R J.Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth[J].Plant Molecular Biology,2005,59:603-617. [62]VAN DE MORTEL J E,SCHAT H,MOERLAND P D,et al.Expression differences for genes involved in lignin,glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens[J].Plant Cell and Environment,2008,31:301-324. [63]SINGH B K,FOLEY R C.ONATE-SANCHEZ L.Transcription factors in plant defense and stress responses[J].Current Opinion in Plant Biology,2002,5:430-436. [64]LEE R,FEINBAUM R,AMBROS V.The C.elegans heterochronic gene lin-4 encodes small RNA with antisense complement arityto lin-14[J].Cell,1993,75:843-854. [65]CHEN X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J].Science,2004,303:2022-2025. [66]DING Y F,ZHU C.The role of microRNAs in copper and cadmium homeostasis[J].Biochemical and Biophysical Research Communications,2009,386(1):6-10. [67] MENDOZA-SOTO A B,SNCHEZ F,HERNNDEZ G.MicroRNAs as regulators in plant metal toxicity response[J].Frontiers in Plant Science,2012,3:105. [68] YANG Z M,CHEN J.A potential role of microRNAs in plant response to metal toxicity[J].Metallomics,2013,5(9):1184-1190. [69] ZHOU Z S,SONG J B,YANG Z M.Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium[J].Journal of Experimental Botany,2012a,63(12):4597-4613. [70] ZHOU Z S,ZENG H Q,LIU Z P,et al.Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal[J].Plant Cell and Environment,2012b,35(1):86-99. [71] HUANG S Q,XIANG A L,CHE L L,et al.A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress[J].Plant Biotechnology Journal,2010,8(8):887-899.
相似文献/References:
[1]高荣侠.黄瓜幼苗对镉胁迫下外源一氧化氮与铁氰化钾的响应[J].北方园艺,2014,38(07):1.
GAO Rong-xia.Response of Exogenous Nitric Oxide and Potassium Ferricyanide Under Cadmium Stress in Cucumber Seedlings[J].Northern Horticulture,2014,38(19):1.
[2]关梦茜,董然.重金属污染土壤的花卉植物修复研究进展[J].北方园艺,2013,37(21):187.
GUAN Meng-xi,DONG Ran.Research Progress on the Flowers Remediation in Heavy Metal Pollution Soil[J].Northern Horticulture,2013,37(19):187.
[3]肖丽,匡银近,覃彩芹.壳低聚糖浸种对镉胁迫下小白菜幼苗部分生理生化特性的影响[J].北方园艺,2012,36(17):27.
XIAO Li,KUANG Yin-jin,QIN Cai-qin.Influence of Oligochitosan on Some Physiological and Biochemical Characteristics of Chinese Cabbage under the Stress of Cadmium[J].Northern Horticulture,2012,36(19):27.
[4]胡博华,徐劼,段德超,等.镉胁迫下芹菜生理响应的傅里叶变换红外光谱研究[J].北方园艺,2015,39(15):11.[doi:10.11937/bfyy.201515003]
HU Bohua,XU Jie,DUAN Dechao,et al.Physiological Response of Celery (Apium graveolens L.) to Cadmium Stress by FTIR Spectroscopy[J].Northern Horticulture,2015,39(19):11.[doi:10.11937/bfyy.201515003]
[5]黄登峰,席嘉宾,赵运林.镉胁迫下两个多年生黑麦草品种的生理响应[J].北方园艺,2016,40(03):66.[doi:10.11937/bfyy.201603018]
HUANG Dengfeng,XI Jiabin,ZHAO Yunlin.The Physiological Response of Two Varieties of Lolium perenne Under Cadmium Stress[J].Northern Horticulture,2016,40(19):66.[doi:10.11937/bfyy.201603018]
[6]陈文志,邬梦晞,罗巧,等.两种表面活性剂对镉胁迫下龙葵生理特性的影响[J].北方园艺,2017,41(11):1.[doi:10.11937/bfyy.201711001]
CHEN Wenzhi,WU Mengxi,LUO Qiao,et al.Effects of Two Surfactants on Growth of Solanum nigrum L.Under Cadmium Stress[J].Northern Horticulture,2017,41(19):1.[doi:10.11937/bfyy.201711001]
[7]赵利清,彭向永,冀瑞卿.镉胁迫下三种观赏草的生理响应及对铜、锌离子的吸收特性[J].北方园艺,2017,41(15):72.[doi:10.11937/bfyy.20170248]
ZHAO Liqing,PENG Xiangyong,JI Ruiqing.Physiological Response and Copper and Zinc Absorption Characteristics of Three Ornamental Grasses Under Cadmium Stress[J].Northern Horticulture,2017,41(19):72.[doi:10.11937/bfyy.20170248]
[8]王羲玥,任艳芳,王伟,等.快菜不同生长期对镉毒害的敏感性差异[J].北方园艺,2019,43(24):14.[doi:10.11937/bfyy.20191989]
WANG Xiyue,REN Yanfang,WANG Wei,et al.Sensitivity of Brassica chinensis L. at Different Growth Stages to Cadmium Toxicity[J].Northern Horticulture,2019,43(19):14.[doi:10.11937/bfyy.20191989]
[9]岳莉然,罗陈筝筝,王竞莹,等.金属镉及温度胁迫对紫根水葫芦植株几种生理指标的影响[J].北方园艺,2020,44(09):89.[doi:10.11937/bfyy.20193730]
YUE Liran,LUO Chenzhengzheng,WANG Jingying,et al.Effects of Cadmium Stress and Temperature Stress on Several Physiological Indicators of Eichhornia crassipes[J].Northern Horticulture,2020,44(19):89.[doi:10.11937/bfyy.20193730]
[10]梁魁景,高小宽,于占晶,等.外源硫对镉胁迫下苹果幼苗光合特性的影响[J].北方园艺,2020,44(12):17.[doi:10.11937/bfyy.20194035]
LIANG Kuijing,GAO Xiaokuan,YU Zhanjing,et al.Effects of Exogenous Sulfur on Photosynthetic Traits in Apple Seedlings Under Cadmium Stress[J].Northern Horticulture,2020,44(19):17.[doi:10.11937/bfyy.20194035]
备注/Memo
第一作者简介:逄洪波(1980-),女,辽宁盖州人,博士,讲师,现主要从事镉超富集植物的分子机制等研究工作。E-mail:panghongbo800206@163.com.责任作者:刘宁(1979-),男,辽宁盖州人,博士,讲师,现主要从事植物营养和废弃物资源化利用等研究工作。E-mail:lnbrisk@163.com.基金项目:国家自然科学基金资助项目(31100176);沈阳师范大学生态与环境研究中心主任基金资助项目(EERC-K-201404);沈阳师范大学大学生创新创业训练计划资助项目(20141016613031);沈阳师范大学重大孵化资助项目(ZD201524);辽宁省农业领域青年科技创新人才培养计划资助项目(2014042);沈阳农业大学青年教师科研基金资助项目(20131023)。