ZHAO Qiong-zhen,LI Qun.Research Progress of Cold Reponse Pathway Under Low Temperature Mediated by CBF Transcription Factor in Plants[J].Northern Horticulture,2012,36(22):175-180.
CBF转录因子介导的植物低温响应途径研究进展
- Title:
- Research Progress of Cold Reponse Pathway Under Low Temperature Mediated by CBF Transcription Factor in Plants
- 文章编号:
- 1001-0009(2012)22-0175-06
- Keywords:
- CBF; CBF regulatory hub; CBF regulator; tolerance of low temperature
- 分类号:
- Q 789
- 文献标志码:
- A
- 摘要:
- CBF低温响应途径在植物低温耐受过程中起着非常重要的作用。低温诱导CBF转录因子表达,可进一步调控一系列低温诱导基因的表达,从而增强植物的抗寒能力。该文对CBF基因在CBF低温响应途径中与其它信号元件之间的联系等方面的研究进展进行了综述。
- Abstract:
- The CBF cold response pathway has a prominent role in cold tolerance in plant.The CBF transcriptional activator induced by cold that controls the expression of a set of genes responding to low temperature and enhances plant cold tolerance.A few of the advances that speak to CBF activators,focusing on the relationship with other signal transduction components were summarized.
参考文献/References:
[1]Thomashow M F.Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms[J].Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599. [2]Ruelland E V M,Zachowski A,Vaughn H.Cold signaling and cold acclimation in plants[J].Adv Bot Res,2009,49:36-54. [3]Liu Q.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression,respectively,in Arabidopsis[J].Plant Cell,1998,10:1391-1406. [4]Jaglo-Ottosen K R,Gilmour S J,Zarka D G,et al.Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J].Science,1998,280:104-106. [5]Gilmour S J,Fowler S G,Thomashow M F.Arabidopsis transcriptional activators CBF1,CBF2 and CBF3 have matching functional activities[J].Plant Mol Biol,2004,54:767-781. [6]Berardini T Z,Mundodi S,Reiser R,et al.Functional annotation of the Arabidopsis genome using controlled vocabularies[J].Plant Physiol,2004,135:1-11. [7]Stockinger E J,Gilmour S J,Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J].Proc Natl Acad Sci USA,1997,94:1035-1040. [8]Gilmour S J,Zarka D G,Stockinger E J,et al.Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J].Plant J,1998,16:433-442. [9]Medina J,Bargues M,Terol J,et al.The Arabidopsis CBF gene family is compo-sed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J].Plant Physiol,1998,119:463-470. [10]Liu Q,Kasuga M,Sakuma Y,et al.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression,respectively,in Arabidopsis[J].Plant Cell,1998,10:1391-1406. [11]Vogel J T,Zarka D G,Van Buskirk H A,et al.Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J].Plant J,2005,41:195-211. [12]Novillo F,Medina J,Salinas J.Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J].Proc Natl Acad Sci USA,2001,104:21002-21007. [13]Hannah M A,Wiese D,Freund S,et al.Natural genetic variation of freezing tolerance in Arabidopsis[J].Plant Physiol,2006,142:98-112. [14]Alonso-Blanco C,Gomez-Mena C,Llorente F,et al.Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis[J].Plant Physiol,2005,139:1304-1312. [15]Novillo F,Alonso J M,Ecker J R.CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J].Proc Natl Acad Sci USA,2004,101:3985-3990. [16]Sung D Y,Kaplan F,Lee K J,et al.Acquired tolerance to temperature extremes[J].Trends Plant Sci,2003(8):179-187. [17]Penfield S.Temperature perception and signal transduction in plants[J].New Phytol,2008,179:615-628. [18]Chinnusamy V,Ohta M,Kanrar S.ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Genes Dev,2003,17:1043-1054. [19]Chinnusamy V,Zhu J,Zhu J K.Cold stress regulation of gene expression in plants[J].Trends Plant Sci,2007(12):444-451. [20]Hua J.From freezing to scorching,transcriptional responses to temperature variations in plants[J].Curr Opin Plant Biol,2009(12):568-573. [21]Miura K,Jin J B,Lee J,et al.SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J].Plant Cell,2007,19:1403-1414. [22]Lee H,Xiong L,Gong Z,et al.The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplas-mic partitioning[J].Genes Dev,2007,15:912-924. [23]Dong C H,Agarwal M,Zhang Y,et al.The negative regulator of plant cold responses,HOS1,is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J].Proc Natl Acad Sci USA,2006,103:8281-8286. [24]Knight M R,Campbell A K,Smith S M.Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium[J].Nature,1991,352:524-526. [25]Tahtiharju S,Sangwan V,Monroy A F,et al.The induction of kin genes in cold-acclimating Arabidopsis thaliana:evidence of a role for calcium[J].Planta,1997,203:442-447. [26]Henriksson K N,Trewavas A J.The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels[J].Plant Cell Environ,2003,26:485-496. [27]Monroy A F,Sarhan F,Dhindsa R S.Cold-induced changes in freezing tolerance,protein phosphorylation,and gene expression:evidence for a role of calcium[J].Plant Physiol,2003,102:1227-1235. [28]Monroy A F,Dhindsa R S.Low-temperature signal-transduction:induction of cold acclimation-specific genes of alfalfa by calcium at 25℃[J].Plant Cell,1995(7):321-331. [29]Doherty C J,Van Buskirk H A,Myers S J,et al.Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J].Plant Cell,2009,21:972-984. [30]Finkler A,Ashery-Padan R,Fromm H.CAMTAs:calmodulin-binding transcription activators from plants to human[J].FEBS Lett,2007,581:3893-3898. [31]Maruyama K,Sakuma Y,Kasuga M,et al.Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems[J].Plant J,2004,38:982-993. [32]Cook D,Fowler S,Fiehn O,et al.A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis[J].Proc Natl Acad Sci USA,2004,101:15243-15248. [33]Kaplan F,Kopka J,Sung D Y,et al.Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of?cold-regulated gene expression with modifications in metabolite content[J].Plant J,2007,50:967-981. [34]Usadel B,Blasing O E,Gibon Y,et al.Multilevel genomic analysis of the response of transcripts,enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range[J].Plant Cell Environ,2008,31:518-547. [35]Achard P,Gong F,Cheminant S,et al.The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J].Plant Cell,2008,20:2117-2129. [36]Harberd N P,Belfield E,Yasumura Y.The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism:how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments[J].Plant Cell,2009,21:1328-1339. [37]Achard P,Renou J P,Berthome R,et al.Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J].Curr Biol,2008,18:656-660. [38]Roberts D W A.Identification of loci on chromosome 5A of wheat involved in control of cold hardiness,vernalization,leaf length,rosette growth habit,and height of hardened plants[J].Genome,1990,33:247-259. [39]Achard P,Cheng H,De Grauwe L,et al.Integration of plant responses to environmentally activated phytohormonal signals[J].Science,2006,311:91-94. [40]Blazquez M A,Weigel D.Integration of floral inductive signals in Arabidopsis[J].Nature,2000,404:889-892. [41]Lee H,Suh S S,Park E,et al.The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J].Genes Dev,2000,14:2366-2376. [42]Onouchi H,Igeno M I,Perilleux C,et al.Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J].Plant Cell,2000,12:885-900. [43]Samach A,Onouchi H,Gold S E,et al.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J].Science,2000,288:1613-1616. [44]Moon J,Suh S S,Lee H,et al.The SOC1 MADS-box gene integrates vernalization andal.gibberellin signals for flowering in Arabidopsis[J].Plant J,2003,35:613-623. [45]Moon J,Lee H,Kim M,et al.Analysis of flowering pathway integrators in Arabidopsis[J].Plant Cell Physiol,2005,46:292-299. [46]Seo E,Lee H,Jeon J,et al.Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC[J].Plant Cell,2009,21:3185-3197. [47]Harmer S L,Hogenesch L B,Straume M,et al.Orchestrated transcription of key pathways in Arabidopsis by the circadian clock[J].Science,2000,290:2110-2113. [48]Fowler S G,Cook D,Thomashow M F.Low temperature induction of Arabidopsis CBF1,2,and 3 is gated by the circadian clock[J].Plant Physiol,2005,137:961-968. [49]Pennycooke J C,Cheng H M,Roberts S M,et al.The low temperature-responsive,Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications,deletions,and rearrangements[J].Plant Mol Biol,2008,67:483-497. [50]Kidokoro S,Maruyama K,Nakashima K,et al.The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis[J].Plant Physiol,2009,151:2046-2057. [51]Dodd A N,Love J,Webb A A.The plant clock shows its metal:circadian regulation of cytosolic free Ca2+[J].Trends Plant Sci,2005,10:15-21. [52]Dodd A N,Jakobsen M K,Baker A J,et al.Time of day modulates low-temperature Ca signals in Arabidopsis[J].Plant J,2006,48:962-973. [53]Donga M A,Eva M.Farréb E M,et al.Circadianclock-Associated 1 and Late Elongated Hypocotyl regulate expression of the C-repeat Binding Factor (CBF) pathway in Arabidopsis[J].PNAS,2011,108:7241-7246.
备注/Memo
第一作者简介:赵琼珍(1987-),女,硕士,现主要从事植物逆境生理与分子生物学等研究工作。