|Table of Contents|

Utilization of Lignocellulose From Maize Stalk by Ganoderma lingzhi Strain

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年4
Page:
96-103
Research Field:
Publishing date:

Info

Title:
Utilization of Lignocellulose From Maize Stalk by Ganoderma lingzhi Strain
Author(s):
WANG Sheng12LI Jintao12YAN Meixia12
(1.Institute of Special Animal and Plant Sciences,Chinese Academy of Agricultural Sciences,Changchun,Jilin 130112;2.Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation,Changchun,Jilin 130112)
Keywords:
corn strawsawdustGanoderma lingzhilignocellulaselignocellulose enzyme
PACS:
S 567.3+1
DOI:
10.11937/bfyy.20233196
Abstract:
Four Ganoderma lingzhi strains were used as test materials,PDA-guaiacol medium,PDA-aniline blue medium,cellulase-producing screening medium and xylanase-producing screening medium were used to determine the production capacity of LCC in these strains.The mycelial growth rate,the activity of lignocellulose degrading enzyme and the degradation of lignocellulose in corn stalk were studied in different cultures during the bacterial development stage,in order to provide reference for the study of lignocellulose utilization in Ganoderma lingzhi during the bacterial development stage.The results showed that LZ-10 with high Lignocellulase activity was screened by 4 kinds of medium and used in the follow-up experiment.In the degradation experiment of corn straw,with the increase of the proportion of corn straw in formula 1 to 7,the mycelial growth rate showed a trend of first increasing and then decreasing,in which formula 1 reached the maximum value of (5.72±0.12)mm·d-1.There were differences in lignocellulosic enzyme activity and lignocellulosic degradation rate among different formulations during the growth period of Ganoderma lingzhi.In formulations 5 and 6,the degradation rate of lignin reached 43.08%±0.05%,and the activities of laccase and manganese peroxidase were the highest.In formulations 5 and 6 with the highest xylanase activity,the maximum degradation rate of hemicellulose reached 36.20%±0.23%,while the degradation rate of cellulose did not change significantly.In summary,the mycelial growth was slow when the added amount of corn stalk was 80%-90% during the period of Ganoderma lingzhi development,but the utilization of lignocellulose was more comprehensive.

References:

[1]张晓庆,王梓凡,参木友,等.中国农作物秸秆产量及综合利用现状分析[J].中国农业大学学报,2021,26(9):30-41.[2]DING C H,WANG X,LI M X.Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes,reducing sugars,and ethanol[J].Applied Microbiology and Biotechnology,2019,103(14):5641-5652.[3]刘霄.高效降解玉米秸秆复合菌群的构建及其降解效果研究[D].哈尔滨:东北农业大学,2019.[4]甄静,李冠杰,李伟,等.毛栓孔菌XYG422菌株产漆酶发酵条件优化及对玉米秸秆生物降解的研究[J].菌物学报,2017,36(6):718-729.[5]安琪,员瑗,戴玉成,等.木质纤维素降解真菌菌株筛选及对玉米秸秆的生物降解研究[J].菌物学报,2023,42(3):782-792.[6]LIU D M,SUN X Y,DIAO W T,et al.Comparative transcriptome analysis revealed candidate genes involved in fruiting body development and sporulation in Ganoderma lucidum[J].Archives of Microbiology,2022,204(8):514-514.[7]SUN J,PENG R H,XIONG A S,et al.Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071-9 in Pichia pastoris[J].Molecular Biology Reports,2012,39(4):3807-3814.[8]刘凌云,黄在兴,邢世和,等.灵芝生长过程中培养料中的碳转化及CO2排放[J].园艺学报,2019,46(10):2047-2054.[9]张芳芳,张桐,戴丹,等.高效木素降解菌的筛选及其对玉米秸秆的降解效果[J].菌物学报,2021,40(7):1869-1880.[10]魏姣,万学瑞,吴润,等.产纤维素酶真菌菌株的分离筛选及产酶条件优化[J].甘肃农业大学学报,2016,51(2):8-15.[11]BOURBONNAIS R,PAICE M G.Oxidation of non-phenolic substrates.An expanded role for laccase in lignin biodegradation[J].FEBS Letters,1990,267(1):99-102.[12]WARIISHI H,VALLI K,GOLD M H.Manganese(Ⅱ) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium:Kinetic mechanism and role of chelators[J].Journal of Biological Chemistry,1992,267(33):23688-23695.[13]BAILEY M J,BIELY P,POUTANEN K.Interlaboratory testing of methods for assay of xylanase activity[J].Journal of Biotechnology,1992,23(3):257-270.[14]XIAO Z,STORMS R,TSANG A.Microplate-based filter paper assay to measure total cellulase activity[J].Biotechnology and Bioengineering,2004,88(7):832-837.[15]刘爽.中低温秸秆降解菌的筛选及其秸秆降解效果研究[D].北京:中国农业科学院,2011.[16]孙芹英,葛春梅,张洁.灵芝固态发酵产漆酶及对秸秆木质素的降解[J].合肥学院学报(自然科学版),2007(3):6-9.[17]WAN C X,LI Y B.Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility[J].Enzyme and Microbial Technology,2010,47(1):31-36.[18]张振刚.利用玉米秸秆替代部分主料栽培杏鲍菇配方试验[J].食药用菌,2020,28(4):265-267.[19]王鑫淼,荆瑞勇,吴楠,等.不同基质对桑黄菌丝生长及酶活性的影响[J].北方园艺,2022(9):109-114.[20]李超,李红.玉米秸秆基质栽培黑木耳配方筛选试验[J].北方园艺,2017(18):166-169.[21]杨文琪.玉米秸秆栽培毛头鬼伞及其菌糠对玉米幼苗生长的影响[D].天津:天津农学院,2019.[22]曾璐漫,康信聪,周荣辉,等.不同培养基成分对灵芝漆酶酶活的影响[J].食用菌,2015,37(03):7-8,29.[23]马银鹏,周舒扬,马庆芳,等.玉米秸秆基质对黑木耳栽培的影响[J].北方园艺,2022(19):122-128.

Memo

Memo:
-
Last Update: 2024-03-15