[1]CHEN Y J,CHOAT B,STERCK F,et al.Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form[J].Ecology Letters,2021,24(11):2350-2363.[2]Intergovernmental Panel on Climate Change.Climate change 2021:The physical science basis[M].Cambridge:Cambridge University Press,2023.[3]陈图强,徐贵青,刘深思,等.干旱胁迫下新疆杨树冠不同高度叶片水分状况与非结构性碳动态[J].西北植物学报,2022,42(3):462-472.[4]ZHANG R,MA X,WANG M,et al.Effects of salinity and water stress on the physiological and ecological processes and plasticity of Tamarix ramosissima seedlings[J].Acta Ecologica Sinica,2016,36(6):433-441.[5]王方琳,柴成武,赵鹏,等.3种荒漠植物光合及叶绿素荧光对干旱胁迫的响应及抗旱性评价[J].西北植物学报,2021,41(10):1755-1765.[6]韩富军,王卫成,贺欢,等.甘肃芍药生产现状及发展建议[J].甘肃科技,2009,25(14):1-2,83.[7]许文营,王煜,智利红,等.洛阳地区切花芍药设施促成栽培技术[J].北方园艺,2022(16):150-153.[8]常青山,张利霞,王建章,等.干旱和复水对4个芍药品种生理指标的影响及品种抗旱性评价[J].南京林业大学学报(自然科学版),2018,42(6):44-50.[9]王慧娟,符真珠,李艳敏,等.观赏芍药杂交育种研究进展[J].北方园艺,2021(16):144-149.[10]DURIGON A,EVERS J,METSELAAR K,et al.Water stress permanently alters shoot architecture in common bean plants[J].Agronomy,2019,9(3):160.[11]WOODRUFF D R,MEINZER F C.Water stress,shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer[J].Plant,Cell & Environment,2011,34(11):1920-1930.[12]王晓娟,李娜,姚文强,等.树木抗旱生理特性及转录组调控研究进展[J].内蒙古农业大学学报(自然科学版).2023,44(5):81-87.[13]王琪,刘建鑫,张建军,等.水分胁迫对芍药生长和生理生化特性影响的研究[J].植物遗传资源学报,2014,15(6):1270-1277.[14]李婷婷.芍药对干旱胁迫的响应及〖STBX〗PM19L和MYB108〖STBZ〗基因功能的初步研究[D].扬州:扬州大学,2021.[15]郭展,张运波.水稻对干旱胁迫的生理生化响应及分子调控研究进展[J].中国水稻科学,2024,38(4):335-349.[16]杨建.芍药对干旱和土壤盐度逆境胁迫的抗性生理响应研究[D].太谷:山西农业大学,2021.[17]殷亦佳.芍药〖STBX〗PlGRAS基因和Plad3H1〖STBZ〗基因对干旱及盐胁迫的响应研究[D].北京:北京林业大学,2020.[18]张青侠,徐金光,鲍明月,等.水涝胁迫对芍药根系形态及体内多胺含量的影响[J].植物生理学报,2020,56(7):1445-1457.[19]郭慧.土壤干旱胁迫对4个芍药品种生理生化反应的影响[D].长沙:湖南农业大学,2009.[20]黄珂.NaCl胁迫下湿地植物的形态变化及其对生理应激的影响[J].山东农业大学学报(自然科学版),2023,54(3):373-377.[21]KISHOR,P B K,SANGAM,S,AMRUTHA R N,et al.Regulation of proline biosynthesis,degradation,uptake and transport in higher plants:Its implications in plant growth and abiotic stress tolerance[J].Current Science:A Fortnightly Journal of Research,2005(3):88.[22]张维,贺亚玲,吴泽昂,等.模拟增温对梭梭光合生理生态特征的影响[J].草地学报,2017,25(2):296-302.[23]HAYAT S,HAYAT Q,ALYEMENI M N,et al.Role of proline under changing environments:A review[J].Plant Signaling & Behavior,2012,7(11):1456-1466.[24]孔祥生,张妙霞,王学永,等.水分胁迫下2个牡丹品种生理生化差异比较[J].林业科学,2011,47(9):162-167.[25]DONG L,LI J,WANG J,et al.Effects of drought stress on osmotic regulation substances of five catalpa bungei clones[J].Agricultural Science & Technology.2013,14(9):1335-1343.[26]屠凯,温国胜,侯平.红叶石楠绿叶与红叶的光合蒸腾特性比较[J].中国农学通报,2019,35(15):110-115.[27]ZHANG X,LI Y,WANG X,et al.Overexpression of a novel F-box protein PsFFL1 from tree peony (Paeonia suffruticosa) confers drought tolerance in tobacco[J].Plant Growth Regulation,2023,101(1):131-143.[28]WANG W,WANG C,PAN D,et al.Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings[J].International Journal of Agricultural and Biological Engineering,2018,11(2):196-201.[29]张一龙,喻启坤,李雯,等.不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应[J].草业学报,2023,32(3):163-178.[30]SHEIKH M M H,ETEMADI N,ARAB M M,et al.Molecular and physiological responses of Iranian Perennial ryegrass as affected by trinexapac ethyl,paclobutrazol and abscisic acid under drought stress[J].Plant Physiology and Biochemistry,2017,111:129-143.[31]YUAN Y,ZENG L,KONG D,et al.Abscisic acid-induced transcription factor PsMYB306 negatively regulates tree peony bud dormancy release[J].Plant Physiology,2024,194(4):2449-2471.[32]王琪.芍药响应干旱胁迫的转录组学分析及相关转录因子的功能研究[D].北京:北京林业大学,2020.[33]秦欣,孙世玲,王铭伦,等.干旱胁迫下冠菌素对花生幼苗叶片渗透调节物质及膜脂过氧化的影响[J].花生学报,2009,38(1):18-21.[34]MLLER I M,JENSEN P E,HANSSON A.Oxidative modifications to cellular components in plants[J].Annual Review of Plant Biology,2007,58:459-481.[35]SHEHAB G G,AHMED O K,BL-BELTAGI H S.Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.)[J].Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2010,38(1):139.[36]LI T,WANG R,ZHAO D,et al.Effects of drought stress on physiological responses and gene expression changes in herbaceous peony (Paeonia lactiflora Pall.)[J].Plant Signaling & Behavior,2020,15(5):1746034.[37]张佳平,李丹青,聂晶晶,等.高温胁迫下芍药的生理生化响应和耐热性评价[J].核农学报,2016,30(9):1848-1856.[38]王韬远,陶冶,夏德美,等.外源喷施1-甲基环丙烯(1-MCP)对干旱胁迫下芍药幼苗生长的影响及作用机理[J].江苏农业学报,2020,36(2):447-454.[39]ZHANG P,BAI J,LIU Y,et al.Drought resistance of ten ground cover seedling species during roof greening[J].PLOS One,2020,15(6):e0220598.[40]冯瑛.樱桃砧木抗旱性评价及应对干旱胁迫响应的生理和分子机制[D].杨凌:西北农林科技大学,2019.[41]ZHAO D,GONG S,HAO Z,et al.Identification of miRNAs responsive to Botrytis cinerea in herbaceous peony (Paeonia lactiflora Pall.) by high-throughput sequencing[J].Genes,2015,6(3):918-934.[42]HAO Z,LIU D,GONG S,et al.High throughput sequencing of herbaceous peony small RNAs to screen thermo-tolerance related microRNAs[J].Genes & Genomics,2017,39(4):397-408.[43]MENG J,GUO J,LI T,et al.Analysis and functional verification of PlPM19L gene associated with drought-resistance in Paeonia lactiflora Pall.[J].International Journal of Molecular Sciences,2022,23(24):15695.[44]WU Y,LI T,CHENG Z,et al.R2R3-MYB transcription factor PlMYB108 confers drought tolerance in herbaceous peony (Paeonia lactiflora Pall.)[J].International Journal of Molecular Sciences,2021,22(21):11884.[45]ZHAO D,ZHANG X,WANG R,et al.Herbaceous peony tryptophan decarboxylase confers drought and salt stresses tolerance[J].Environmental and Experimental Botany,2019,162:345-356.