|Table of Contents|

Research Progress on Physiological and Molecular Mechanisms of Turfgrass Resistance to Drought Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年21
Page:
106-114
Research Field:
Publishing date:

Info

Title:
Research Progress on Physiological and Molecular Mechanisms of Turfgrass Resistance to Drought Stress
Author(s):
ZHAI Chenyuan123LI Yonglong123LI Yan123GU Jiqian123WEI Yujia123ZHANG Kun123
(1.College of Grassland Science,Qingdao Agricultural University,Qingdao,Shandong 266109;2.Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta,Qingdao,Shandong 266109;3.Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach,Qingdao,Shandong 266109)
Keywords:
turfgrassdrought tolerancephysiological and biochemical mechanismsmolecular mechanisms
PACS:
S 688.4
DOI:
10.11937/bfyy.20240519
Abstract:
Turfgrass has an important role in regulating climate and improving ecology.The limited water resources available for agriculture seriously affects the growth and development of turfgrass,and improving the drought tolerance of turfgrass can help to alleviate this problem.This study summarized the research progress on the physiological and biochemical mechanisms of antioxidant,osmoregulation,hormone,and microorganisms,and the molecular mechanisms of drought-related genes and multiple genomics of turfgrass under drought stress.The key issues of the current research on turfgrass drought resistance and future prospects pertaining were also discussed,in order to provide information resources and references for the next research on drought resistance of turfgrass.

References:

[1]任洪雷,朱筱,张丰屹,等.干旱胁迫的影响及抗旱性研究进展[J/OL].分子植物育种,(2024-08-05)[2024-09-05].http://kns.cnki.net/kcms/detail/46.1068.S.20240119.1548.002.html.[2]张帆,程玉臣,伍建辉,等.植物抗旱途径及相关基因研究进展[J].现代农业,2022(6):38-41.[3]岑慧芳,钱文武,朱慧森,等.干旱胁迫对草地早熟禾叶片显微结构和光合特征的影响[J].草地学报,2023,31(5):1368-1377.[4]赵春程.多年生黑麦草干旱胁迫生理应答机理研究[D].烟台:鲁东大学,2020.[5]宋娅丽,王莎,王克勤,等.3种冷季型草坪草苗期对干旱胁迫的生理响应[J].草原与草坪,2018,38(3):9-16.[6]MA X,YU J,ZHUANG L,et al.Differential regulatory pathways associated with drought-inhibition and post-drought recuperation of rhizome development in perennial grass[J].Annals of Botany,2020,126(3):481-497.[7]孙鹏波,王志军,格根图,等.紫花苜蓿耐盐碱胁迫与缓减措施的研究进展[J].北方园艺,2023(21):131-137.[8]曲亚楠,杨志民.高温与干旱胁迫对匍匐翦股颖抗氧化代谢的影响[J].山东农业大学学报(自然科学版),2014,45(4):489-494.[9]常艺馨,包国章,张梦瑜.干旱及冻融胁迫对黑麦草抗氧化酶活性和脯氨酸质量比的影响[J].吉林大学学报(理学版),2020,58(1):184-188.[10]白利国,俞玲,马晖玲.野生草地早熟禾对干旱胁迫的生理响应[J].草原与草坪,2014,34(2):86-91.[11]张博文,李富平,许永利,等.PEG-6000模拟干旱胁迫下五种草本植物的抗旱性[J].分子植物育种,2018,16(8):2686-2695.[12]贾琰,赵宏伟,王敬国,等.逆境胁迫下作物中γ-氨基丁酸代谢及作用的研究进展[J].作物杂志,2014(5):9-15.[13]陈梓健.外源GABA对高温、干旱胁迫下高羊茅的生理影响[D].广州:仲恺农业工程学院,2017.[14]LI Z,CHENG B,PENG Y,et al.Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass[J].Plant Physiology and Biochemistry,2020,157:185-194.[15]戴云.干旱胁迫及复水条件下外源ALA对高羊茅糖代谢的影响[D].南京:南京农业大学,2013.[16]牛奎举.外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制[D].兰州:甘肃农业大学,2018.[17]李爱梅,张玲,张超,等.黄腐酸和甜菜碱预处理对干旱胁迫下平邑甜茶生理特性及光合的影响[J].西北植物学报,2017,37(2):307-314.[18]曹益凡.外源甜菜碱对草地早熟禾抗旱性的影响[D].北京:北京林业大学,2017.[19]蔡海琳.外源甜菜碱和5-氨基乙酰丙酸对高羊茅抗旱性的影响[D].南京:南京农业大学,2013.[20]吴情.多胺对多年生黑麦草抗旱性的影响[D].北京:北京林业大学,2014.[21]SHI H,YE T,CHAN Z.Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses[J].Journal of Proteome Research,2013,12(11):4951-4964.[22]张学霞,杨璐璐,华开.CO2浓度对高羊茅抗旱性及水分利用效率的影响分析[J].草地学报,2015,23(3):502-509.[23]杨璐璐,华开,张学霞.不同CO2浓度及干旱胁迫下高羊茅的生理响应和光谱特征[J].中国草地学报,2014,36(4):72-78,91.[24]孙晓梵,张一龙,李培英,等.不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J].草业学报,2022,31(6):69-78.[25]SAUD S,FAHAD S,CUI G,et al.Determining nitrogen isotopes discrimination under drought stress on enzymatic activities,nitrogen isotope abundance and water contents of Kentucky bluegrass[J].Scientific Reports,2020,10(1):6415.[26]曹丽,回振龙,魏小红,等.SNP对PEG模拟干旱胁迫下早熟禾种子萌发及幼苗抗性的影响[J].甘肃农业大学学报,2013,48(5):100-106,113.[27]MASTALERCZUK G,BORAWSKA-JARMUOWICZ B,DARKALT A.Changes in the physiological and morphometric characteristics and biomass distribution of forage grasses growing under conditions of drought and silicon application[J].Plants,2022,12(1):16.[28]余群.干旱胁迫下硅肥对草地早熟禾苗期生长发育的影响[D].兰州:兰州大学,2014.[29]许金凤,朱瑾,任畇霏,等.外源硅添加对草地早熟禾硅素吸收及根系生长的影响[J].草地学报,2017,25(5):1007-1013.[30]SAUD S,CHEN Y,FAHAD S,et al.Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery[J].Environmental Science and Pollution Research,2016,23(17):17647-17655.[31]SAUD S,LI X,CHEN Y,et al.Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions[J].The Scientific World Journal,2014,2014:368694.[32]郑炳松,程晓建,蒋德安,等.钾元素对植物光合速率、Rubisco和RCA的影响[J].浙江林学院学报,2002,19(1):104-108.[33]王昕慧,孙晓阳,李勋,等.钾素增强干旱胁迫下草地早熟禾生理耐性的机制[J].中国草地学报,2018,40(4):23-29.[34]许喆,任健,田英,等.外源ABA对干旱胁迫下多年生黑麦草光合特性的影响[J].草地学报,2019,27(5):1243-1249.[35]LI Z,YU J,PENG Y,et al.Metabolic pathways regulated by abscisic acid,salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera)[J].Physiologia Plantarum,2017,159(1):42-58.[36]SHEIKH MOHAMMADI M H,ETEMADI N,ARAB M M,et al.Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapac ethyl,paclobutrazol and abscisic acid under drought stress[J].Plant Physiology and Biochemistry,2017,111:129-143.[37]王慧,王冬梅,张泽洲,等.外源褪黑素对干旱胁迫下黑麦草和苜蓿抗氧化能力及养分吸收的影响[J].应用生态学报,2022,33(5):1311-1319.[38]尉欣荣,张智伟,周雨,等.褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用[J].草地学报,2020,28(5):1337-1345.[39]李本峰,杜红梅.褪黑素预处理提高多年生黑麦草抗旱性的机理分析[J].草业科学,2019,36(3):666-676.[40]韩露.乙烯利对草地早熟禾(Poa pratensis L.)抗旱性的影响[D].北京:北京林业大学,2014.[41]高娅楠,韩烈保,许立新.乙烯利对干旱胁迫下草地早熟禾抗氧化酶基因表达的影响[J].草地学报,2021,29(10):2200-2213.[42]马媛,张嘉航,高娅楠,等.干旱胁迫下乙烯利对草地早熟禾叶绿素代谢基因表达的影响[J].中国草地学报,2022,44(12):1-10.[43]ZHANG J,GAO Y,XU L,et al.Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment[J].PLoS One,2021,16(12):e0261472.[44]马碧花,蔺伟虎,高敏,等.干旱胁迫下水杨酸和内生真菌对多年生黑麦草的影响[J].草业学报,2020,29(1):135-144.[45]马碧花.水杨酸、航天诱变和内生真菌对多年生黑麦草抗逆性的影响[D].兰州:兰州大学,2020.[46]范丽霞.外源水杨酸对干旱胁迫下结缕草生长及生理影响[D].沈阳:辽宁大学,2013.[47]许平平.水杨酸对干旱条件下克隆植物结缕草生长及生理的影响[D].沈阳:辽宁大学,2014.[48]孙晓梵,张一龙,李培英,等.茉莉酸甲酯浸种对狗牙根种子萌发期抗旱性影响[J].中国草地学报,2021,43(4):53-60.[49]孙晓梵,张一龙,李培英,等.喷施茉莉酸甲酯对干旱胁迫下狗牙根生理特性的影响[J].草地学报,2022,30(10):2811-2818.[50]孙晓梵.外源MeJA、氮素对狗牙根抗旱性影响[D].乌鲁木齐:新疆农业大学,2021.[51]袁惠燕,梅晓东,胡磊,等.干旱胁迫下保水剂对高羊茅种子萌发及幼苗生长的影响[J].北方园艺,2014(1):72-74.[52]刘容,李振华,张馨馨,等.保水剂与氮磷钾肥互作对干旱胁迫下多年生黑麦草生长生理的影响[J].北方园艺,2022(12):64-71.[53]黄慧青,周林涛,安勐颍,等.保水剂对海滨雀稗抗旱性的影响[J].西南农业学报,2016,29(8):1828-1833.[54]FLWTCHER R A,GILLAEY A,SANKHLA N,et al.Triazoles as plant growth regulators and stress protectants[J].Horticultural Reviews,2000(24):55-138.[55]曹炜.污泥对草地早熟禾(Poa pratensis L.)光合和水分利用效率的影响研究[D].北京:北京林业大学,2017.[56]尚明娟,曹允馨,王刚,等.干旱胁迫下多年生黑麦草对污泥处理的生理生化响应[J].草原与草坪,2018,38(2):25-32.[57]尚明娟.污泥对干旱胁迫下多年生黑麦草生长、抗氧化和激素代谢的影响[D].北京:北京林业大学,2018.[58]张宁,曹允馨,徐伟,等.干旱胁迫下污泥对草地早熟禾生长及激素代谢的影响[J].草业学报,2021,30(3):167-176.[59]于安东.施用污泥对多年生黑麦草抗旱生理及基因表达的影响研究[D].北京:北京林业大学,2019.[60]韩朝,董慧,常智慧.污泥对干旱条件下高羊茅氮素利用的影响[J].北京林业大学学报,2014,36(4):82-87.[61]李会强,汪建军,张光明,等.干旱条件下内生真菌对多年生黑麦草生长的影响[J].草业科学,2016,33(4):599-607.[62]陈志豪,刘学锋,鲍根生,等.内生真菌对高羊茅种子耐干旱能力的影响[J].塔里木大学学报,2016,28(2):12-17.[63]DECUNTA F A,PREZ L I,MALINOWSKI D P,et al.A systematic review on the effects of Epichlo fungal endophytes on drought tolerance in cool-season grasses[J].Frontiers in Plant Science,2021,12:644731.[64]WU X,SHI H,GUO Z.Overexpression of a NF-YC gene results in enhanced drought and salt tolerance in transgenic seashore Paspalum[J].Frontiers in Plant Science,2018,9:1355.[65]CHEN M,ZHAO Y,ZHUO C,et al.Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice[J].Plant Biotechnology Journal,2015,13(4):482-491.[66]张蕊.日本结缕草(Zoysia japonica)〖STBX〗ZjERF3〖STBZ〗基因的克隆和功能鉴定[D].北京:北京林业大学,2020.[67]彭麒文.狗牙根〖STBX〗CdMYB59〖STBZ〗基因的功能分析[D].广州:华南农业大学,2017.[68]李飞飞.转AtDREBlA基因草地早熟禾适应干旱及旱后复水的生理生化响应[D].北京:北京林业大学,2015.[69]ZHANG P,YANG P,ZHANG Z,et al.Isolation and characterization of a buffalograss (Buchloe dactyloides) dehydration responsive element binding transcription factor,〖STBX〗BdDREB2〖STBZ〗[J].Gene,2014,536(1):123-128.[70]ZUO Z F,KANG H G,HONG Q C,et al.A novel basic helix-loop-helix transcription factor,ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging[J].Plant Molecular Biology,2020,102(4/5):447-462.[71]姜红岩,滕珂,檀鹏辉,等.日本结缕草〖STBX〗ZjZFN1〖STBZ〗基因对拟南芥的转化及其耐旱性分析[J].草业学报,2019,28(4):129-138.[72]谢建平,袁世力,刘星辰,等.狗牙根品种C299脱水素基因抗逆功能分析[J].中国草地学报,2018,40(4):16-22.[73]陈莹,陈锡,王茜,等.高羊茅逆境胁迫蛋白基因FaUSP的克隆、表达及生物学功能分析[J].生物技术通报,2021,37(2):32-39.[74]易小渠.狗牙根干旱高温胁迫相关基因的克隆和功能解析[D].武汉:华中农业大学,2020.[75]SUN X,HUANG N,LI X,et al.A chloroplast heat shock protein modulates growth and abiotic stress response in creeping bentgrass[J].Plant,Cell & Environment,2021,44(6):1769-1787.[76]HANG N,SHI T,LIU Y,et al.Overexpression of [STBX]Os-microRNA408[STBZ] enhances drought tolerance in perennial ryegrass[J].Physiologia Plantarum,2021,172(2):733-747.[77]ZHAO J,YUAN S,ZHOU M,et al.Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance[J].Plant Biotechnology Journal,2019,17(1):233-251.[78]ZHOU M,LUO H.Role of microRNA319 in creeping bentgrass salinity and drought stress response[J].Plant Signaling & Behavior,2014,9(4):e28700.[79]CHEN Y,CHEN Y,SHI Z,et al.Biosynthesis and signal transduction of ABA,JA,and BRs in response to drought stress of Kentucky bluegrass[J].International Journal of Molecular Sciences,2019,20(6):1289.[80]冷暖,刘晓巍,张娜,等.草地早熟禾干旱胁迫转录组差异性分析[J].草业学报,2017,26(12):128-137.[81]张然,马祥,朱瑞婷,等.青海野生草地早熟禾响应干旱胁迫的代谢通路及转录调控分析[J].草地学报,2020,28(6):1508-1518.[82]YE T,SHI H,WANG Y,et al.Contrasting proteomic and metabolomic responses of bermudagrass to drought and salt stresses[J].Frontiers in Plant Science,2016,7:1694.[83]VANANI F R,SHABANI L,SABZALIAN M R,et al.Comparative physiological and proteomic analysis indicates lower shock response to drought stress conditions in a self-pollinating perennial ryegrass[J].PLoS One,2020,15(6):e0234317.[84]LI Z,HUANG T,TANG M,et al.iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera)[J].Plant Physiology and Biochemistry,2019,145:216-226.[85]张彩峡,吴洪新,毕玉芬.多花黑麦草抗旱代谢通路挖掘[J].草业科学,2020,37(8):1528-1536.[86]李小冬,王小利,王茜,等.干旱胁迫下高羊茅叶片的代谢组学分析[J].中国草地学报,2016,38(5):59-65.[87]李娟,雷霞,王小利,等.干旱胁迫对高羊茅航天诱变新品系生理特性的影响及综合评价[J].草业学报,2017,26(10):87-98.[88]宋华伟,刘颖,曹荣祥,等.3种结缕草及其60Co-γ辐射诱变新品系抗旱性比较[J].华南农业大学学报,2015,36(6):55-61.

Memo

Memo:
-
Last Update: 2024-11-21