|Table of Contents|

Effects of Salt-alkaline Stress on Physiological Characteristics of Salt Tolerance in Chieh-qua Seedlings

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年15
Page:
8-14
Research Field:
Publishing date:

Info

Title:
Effects of Salt-alkaline Stress on Physiological Characteristics of Salt Tolerance in Chieh-qua Seedlings
Author(s):
LU Panling1DU Xuan1WANG Ying1ZHENG Ronghua2TIAN Shoubo1LIU Na1
(1.Horticultural Research Institute,Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Protected Horticultural Technology,Shanghai 201403;2.Shanghai Yibo Fruit and Vegetable Planting Professional Cooperative,Shanghai 201403)
Keywords:
chieh-quasalt-alkaline stressreactive oxygen speciesosmotic regulationchlorophyll fluorescence
PACS:
S 642
DOI:
10.11937/bfyy.20240347
Abstract:
Chieh-qua seedlings ‘Feicuida 1’ was selected as the experimental material,the method of hydroponics was adopted and different salt concentrations (0,25,50,75,100,125 mmol·L-1) were set up to observe and measure the physiological response of chieh-qua seedlings,in order to provide reference for the damage mechanism of alkaline salt stress on chieh-qua seedlings. The results showed that low concentrations of salt stress such as 25,50 mmol·L-1 had no obvious effect on the seedlings,but higher concentrations of salt stress caused damage to the photosynthetic system of the seedlings,and Y(Ⅱ),ETR,qP,Fv/Fm increased significantly.In addition,the ROS content (O·〖TX--*9〗2 and H2O2) and the activities of various antioxidant enzymes were significantly up-regulated under high concentration salt stress.Salt stress also significantly increased MDA content and relative conductivity,which may be caused by excessive accumulation of ROS.Finally,the study also found that the high concentration of salt stress also promoted the significant increase of osmoregulatory substances such as Pro,soluble sugar and soluble protein.In conclusion,the damage of 25,50 mmol·L-1 salt solution was limited,but the salt concentration of 75 mmol·L-1 and above exceeded the tolerance range of chieh-qua seedlings.In addition,the chieh-qua could cope with salt stress by increasing photosynthetic heat dissipation,increasing antioxidant enzyme activity and increasing osmoregulator synthesis.

References:

[1]吴嘉垲,杨晨,欧立军.盐胁迫对不同辣椒品种种子萌发特性的影响[J].辣椒杂志,2023,21(3):20-23.[2]刘德兴,荆鑫,焦娟,等.嫁接对番茄产量、品质及耐盐性影响的综合评价[J].园艺学报,2017,44(6):1094-1104.[3]刘娜,杜旋,鲁博,等.不同破壳率对节瓜种子发芽及幼苗生长的影响[J].上海农业学报,2021,37(6):60-64.[4]何晓明,彭庆务,王敏,等.我国节瓜遗传育种研究进展[J].广东农业科学,2021,48(9):1-11.[5]秦曼丽,胡绪峰,刘德麒,等.硅对盐胁迫下黄瓜生长和多胺代谢的影响[J].植物生理学报,2022,58(6):1077-1091.[6]张子健,刘美岑,张东,等.盐胁迫对甜瓜幼苗根系生长及膜脂过氧化的影响[J].内蒙古农业大学学报(自然科学版),2022,43(2):11-16,101.[7]王伟奇,张蒙,秦肇辰,等.南瓜耐盐性研究进展[J].中国蔬菜,2020(10):18-26.[8]张瑜,吴才君,苏文桢,等.西瓜OSCA基因家族全基因组鉴定及胁迫响应分析[J].南方农业学报,2021,52(12):3330-3339.[9]徐新娟,李勇超.2种植物相对电导率测定方法比较[J].江苏农业科学,2014,42(7):311-312.[10]方怡然,薛立.盐胁迫对植物叶绿素荧光影响的研究进展[J].生态科学,2019,38(3):225-234.[11]BARBER J.‘Photosystem Ⅱ:The water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere[J].Quarterly Reviews of Biophysics,2016,49:e14.[12]ZABRET J,BOHN S,SCHULLER S K,et al.Structural insights into photosystem Ⅱ assembly[J].Nature Plants,2021(7):524-538.[13]严蓓,孙锦,束胜,等.外源钙对NaCl胁迫下黄瓜幼苗叶片光合特性及碳水化合物代谢的影响[J].南京农业大学学报,2014,37(1):31-36.[14]程玉静,郭世荣,束胜,等.外源硝酸钙对盐胁迫黄瓜幼苗生长和光合作用的影响[J].江西农业学报,2012,24(4):38-41,45.[15]董杰,陈新新,杨倩,等.高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较[J].麦类作物学报,2018,38(3):315-322.[16]徐晨,刘晓龙,李前,等.供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响[J].植物学报,2018,53(2):185-195.[17]周晓瑾,黄海霞,张君霞,等.盐胁迫对裸果木幼苗光合特性的影响[J].草业学报,2023,32(2):75-83.[18]XIE D L,ZHENG X L,ZHOU C Y,et al.Functions of redox signaling in pollen development and stress response[J].Antioxidants,2022,11(2):287.[19]WANG W,LIU S,YAN M.Synthesis of γ-aminobutyric acid-modified chitooligosaccharide derivative and enhancing salt resistance of wheat seedlings[J].Molecules,2022,27(10):3068.[20]杨林林,韩敏琦,高嘉,等.不同形态硒对盐胁迫下小麦苗期光合生理、抗氧化系统及离子稳态的影响[J].山东农业科学,2023,55(9):46-56.[21]YASIR T A,KHAN A,SKALICKY M,et al.Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth,yield,and biochemical properties[J].Molecules,2021,26(9):2576.[22]GILL R A,ZANG L,ALI B,et al.Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L[J].Chemosphere,2015,120:154-164.[23]YU H,ZHAO W,WANG M,et al.The exogenous application of spermidine alleviates photosynthetic inhibition and membrane lipid peroxidation under low-light stress in tomato (Lycopersicon esculentum Mill.) seedlings[J].Plant Growth Regulation,2016,78(3):413-420.[24]杨宏伟,刘文瑜,沈宝云,等.NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响[J].草业学报,2017,26(8):146-153.[25]贾庆美,胡克玲.外源H2O2对盐胁迫下甜瓜生理特性的影响[J].安徽农学通报,2023,29(14):39-42,55.[26]胡高峰,张小勇,莫海涛,等.抗盐碱制剂对棉花幼苗生理生化特性的影响[J].西北农业学报,2009,18(2):169-172.[27]岳新丽,湛润生,牛雅玉,等.NaCl胁迫对黄花菜种子萌发和幼苗生长的影响[J].中国农学通报,2023,39(16):35-40.[28]高桐梅,吴寅,李丰,等.苗期水分胁迫对芝麻生长和生理特性的影响[J].核农学报,2017,31(11):2229-2235.[29]熊超明,杨婉莹,王文晓,等.不同盐碱胁迫对草莓生长与生理的影响[J].北方园艺,2023(11):38-44.

Memo

Memo:
-
Last Update: 2024-08-23