|Table of Contents|

Effects of FGD-gypsum on the Improvement of Alkaline Soil and Soil Organic Carbon

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年17
Page:
84-92
Research Field:
Publishing date:

Info

Title:
Effects of FGD-gypsum on the Improvement of Alkaline Soil and Soil Organic Carbon
Author(s):
XIA Xinyue1ZHAO Qiancheng1SUN Fuxin2SUN Yanxin1ZHANG Jun1ZHANG Fenghua1
(1.College of Agricultural,Shihezi University,Shihezi,Xinjiang 832003;2.Jiangsu Guoxin Xielian Biotechnology Co.Ltd.,Yixing,Jiangsu 214200)
Keywords:
salt and alkaliFGD-gypsumsoil column simulationfunctional groupsoil organic carbon
PACS:
S 156.4
DOI:
10.11937/bfyy.20240317
Abstract:
Taking Xinjiang′s alkaline soil as the research object,soil pillar test was used,5 FGD-gypsum applied levels 0,15,30,45,60,60 t·hm-2 (marked as T0,T1,T2,T3,T4) were set,respectively.The application of different FGD-gypsum on 0-40 cm alkali-based soil physical and chemical properties and organic carbon solidaries were studied,in order to provide reference for the improvement of saline-alkali cultivated land quality improvement.The results showed that,the application of FGD-gypsum could effectively reduce the pH (4.3%-23.2%) and the exchangeable sodium ion content (5.7%-92.6%),and increase the soil organic carbon content (47.5%-72.1%),and the improvement effect of 0-20 cm soil layer was better than that of 20-40 cm soil layer.When the amount of FGD-gypsum was T3,the contents of 0-20 cm pH and exchangeable sodium in alkalized soil decrease most significantly,by 23.2% and 92.6%,respectively.Compared with T0,soil organic carbon content increased by 47.5%,MAOC and POC content increased by 57.0% and 13.5%,respectively.The infrared spectrum measurement results further showed that adding suitable FGD-gypsum could increase the content of polysaccharides and aromatic compounds in alkalized soil.Correlation analysis showed that pH,EC value and exchangeable sodium content were the factors affecting soil organic carbon and its component content.In conclusion,FGD-gypsum could improve the physical and chemical properties of alkaline soil,promote the accumulation of aliphatic and polysaccharide compounds,and promote the soil organic carbon retention.

References:

[1]杨劲松,姚荣江,王相平,等.中国盐渍土研究:历程、现状与展望[J].土壤学报,2022,59(1):10-27.[2]赵永敢,王淑娟,李彦,等.脱硫石膏改良盐碱土技术发展历程与展望[J].清华大学学报(自然科学版),2022,62(4):735-745.[3]魏守才,谢文军,夏江宝,等.盐渍化条件下土壤团聚体及其有机碳研究进展[J].应用生态学报,2021,32(1):369-376.[4]姜展博,宁松瑞,王全九.脱硫石膏改良盐碱土壤综合效果评价研究[J/OL].土壤学报,(2023-10-24)[2024-05-14].http://kns.cnki.net/kcms/detail/32.1119.p.20231023.1618.004.html.[5]王利书,宋利强,宋福如,等.有机硅功能肥使用方式对土壤水分运移特征的影响[J].北方园艺,2022(8):76-81.[6]张睿博,汪金松,王全成,等.土壤颗粒态有机碳与矿物结合态有机碳对气候变暖响应的研究进展[J].地理科学进展,2023,42(12):2471-2484.[7]蔡岸冬,徐香茹,张旭博,等.不同利用方式下土壤矿物结合态有机碳特征与容量分析[J].中国农业科学,2014,47(21):4291-4299.[8]ROCCI K S,LAVALLEE J M,STEWART C E,et al.Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter:A meta-analysis[J].Science of the Total Environment,2021,793:148569.[9]YU H,YANG P,LIN H,et al.Effects of sodic soil reclamation using flue gas desulphurization gypsum on soil pore characteristics,bulk density,and saturated hydraulic conductivity[J].Soil Science Society of America Journal,2014,78(4):1201-1213.[10]冯浩杰.水稻种植条件下脱硫石膏改良碱土的研究[D].泰安:山东农业大学,2015.[11]崔媛,张强,王斌,等.脱硫石膏对重度苏打盐化土中主要离子淋洗的影响[J].水土保持学报,2016,30(1):310-314.[12]ZHAO Y G,WANG S J,LIU J,et al.Fertility and biochemical activity in sodic soils 17 years after reclamation with flue gas desulfurization gypsum[J].Journal of Integrative Agriculture,2021,20(12):3312-3322.[13]HUANG X,JIA Z,GUO J,et al.Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol[J].Geoderma,2019,355:113880.[14]SCHMIDT M W I,TORN M S,ABIVEN S,et al.Persistence of soil organic matter as an ecosystem property[J].Nature,2011,478(7367):49-56.[15]YU G,XIAO J,HU S,et al.Mineral availability as a key regulator of soil carbon storage[J].Environmental Science & Technology,2017,51(9):4960-4969.[16]王著峰,王玉刚,陈园园,等.施加脱硫石膏对盐碱土固碳的影响[J].水土保持学报,2021,35(2):353-360.[17]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.[18]CAMBARDELLA C A,ELLIOTT E T.Particulate soil organic-matter changes across a grassland cultivation sequence[J].Soil Science Society of America Journal,1992,56(3):777-783.[19]杨传宝,倪惠菁,苏文会,等.经营措施对毛竹林土壤不同组分有机碳、氮及化学结构的影响[J].应用生态学报,2020,31(1):25-34.[20]沈婧丽,王彬,许兴.脱硫石膏改良盐碱地研究进展[J].农业科学研究,2016,37(1):65-69.[21]李玉波,许清涛.脱硫石膏对苏打盐碱土旱田的改良效果研究[J].中国农机化学报,2013,34(1):249-252.[22]窦晓慧,李红丽,盖文杰,等.牧草种植对黄河三角洲盐碱土壤改良效果的动态监测及综合评价[J].水土保持学报,2022,36(6):394-401.[23]郑敏娜,梁秀芝,韩志顺,等.不同改良措施对晋北盐碱土盐碱障碍和青贮玉米氮素吸收的调控[J].草地学报,2021,29(12):2871-2877.[24]李明珠,张文超,王淑娟,等.适宜脱硫石膏施用方式改良河套灌区盐碱土提高向日葵产量[J].农业工程学报,2022,38(6):89-95.[25]王丽.秸秆配施脱硫石膏对滨海盐碱土碳固持的影响[D].烟台:鲁东大学,2022.[26]屈忠义,胡敏,王丽萍,等.不同改良措施对盐渍化土壤水热碳与葵花产量的影响[J].农业机械学报,2020,51(3):268-275.[27]许清涛,李玉波.脱硫石膏改良碱化土壤的施用量研究[J].江苏农业科学,2013,41(2):341-343.[28]刘文政,王遵亲,熊毅.我国盐渍土改良利用分区[J].土壤学报,1978,15(2):101-112.[29]MANU V,WHITBREAD A,BLAIR N,et al.Carbon status and structural stability of soils from differing land use systems in the Kingdom of Tonga[J].Soil Use and Management,2014,30(4):517-523.[30]PARADELO R,VIRTO I,CHENU C.Net effect of liming on soil organic carbon stocks:A review[J].Agriculture,Ecosystems & Environment,2015,202:98-107.[31]王莹莹,肖谋良,张昀,等.水稻光合碳在植株-土壤系统中分配与稳定对施磷的响应[J].环境科学,2019,40(4):1957-1964.[32]LAVALLEE J M,SOONG J L,COTRUFO M F.Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J].Global Change Biology,2020,26(1):261-273.[33]LEHMANN J,KLEBER M.The contentious nature of soil organic matter[J].Nature,2015,528(7580):60-68.[34]徐嘉晖,孙颖,高雷,等.土壤有机碳稳定性影响因素的研究进展[J].中国生态农业学报,2018,26(2):222-230.[35]CARMEIS FILHO A C A,PENN C J,CRUSCIOL C A C,et al.Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions[J].Agriculture,Ecosystems & Environment,2017,241:11-23.[36]WITZGALL K,VIDAL A,SCHUBERT D I,et al.Particulate organic matter as a functional soil component for persistent soil organic carbon[J].Nature Communications,2021,12(1):4115.[37]杨娥女,王宝荣,姚宏佳,等.黄土高原生物土壤结皮发育过程中颗粒态和矿物结合态有机碳变化特征[J].水土保持研究,2023,30(1):25-33,40.[38]XIAO P,XIAO B,ADNAN M.Effects of Ca2+ on migration of dissolved organic matter in limestone soils of the southwest China Karst Area[J].Land Degradation & Development,2021,32(17):5069-5082.[39]MAVI M S,SANDERMAN J,CHITTLEBOROUGH D J,et al.Sorption of dissolved organic matter in salt-affected soils:Effect of salinity,sodicity and texture[J].The Science of the Total Environment,2012,435/436:337-344.[40]STEFFENS M,KLBL A,SCHRK E,et al.Distribution of soil organic matter between fractions and aggregate size classes in grazed semiarid steppe soil profiles[J].Plant and Soil,2011,338(1):63-81.[41]龚香宜,徐威,何炎志.溶解性有机质的光谱特征及其对土壤吸附β-HCH的影响[J].环境科学学报,2017,37(1):318-325.[42]朱姝,窦森,陈丽珍.秸秆深还对土壤团聚体中胡敏酸结构特征的影响[J].土壤学报,2015,52(4):747-758.[43]曹生奎,曹广超,陈克龙,等.青海湖高寒湿地土壤有机碳含量变化特征分析[J].土壤,2013,45(3):392-398.

Memo

Memo:
-
Last Update: 2024-09-24