|Table of Contents|

Mechanism of Nitric Oxide Signaling Pathway Regulating AsA-GSH Circulation of Pepper Under High Temperature Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年14
Page:
8-18
Research Field:
Publishing date:

Info

Title:
Mechanism of Nitric Oxide Signaling Pathway Regulating AsA-GSH Circulation of Pepper Under High Temperature Stress
Author(s):
DU Bin
(Department of Horticulture,Taiyuan University,Taiyuan,Shanxi 030012)
Keywords:
pepperhigh temperature stressNOAsA-GSH circulatory
PACS:
S 641.3
DOI:
10.11937/bfyy.20240238
Abstract:
Taking ‘Xinjianjiao 22’ pepper as the experimental material,using the method of spraying different concentrations of exogenous NO donor SNP,NO synthase inhibitor,nitrate reductase inhibitor and NO scavenger under high temperature stress (38±1)℃,the effects of endogenous NO content,ROS metabolism,key substances content,key enzyme activity and gene expression in AsA-GSH circulatory system of different treatments were studied, in order to reveal the mechanism by which the NO signaling pathway regulates the AsA-GSH cycle metabolism of pepper under high-temperature stress.The results showed that high temperature stress could significantly increased the endogenous NO content in pepper,while NO scavengers and enzyme inhibitors could significantly reduce the endogenous NO content.Adding appropriate concentration of exogenous NO could effectively increase the enzyme activities of ascorbate peroxidase (APX),monodehydroascorbate reductase (MDHAR),dehydroascorbate reductase (DHAR) and glutathione reductase (GR),up-regulate the expression of MDHAR,DHAR and GR genes,and increase the levels of AsA,dehydroascorbic acid (DHA),GSH and oxidized glutathione (GSSG).Adding NO scavenger and synthesis inhibitor would reverse the above changes.The results showed that NO signaling pathway played an important role in the response of pepper to high temperature stress,and NO signaling molecules could regulate the expression and post-translation modification of key genes in AsA-GSH circulation system of pepper,effectively enhance the activity of key enzymes,and increase the ratio of reduced state to oxidized state in AsA-GSH circulation,thus maintaining the balance of ROS in vivo.Supplementing appropriate exogenous NO could effectively improve the resistance of pepper to high temperature stress and enhance its heat resistance.

References:

[1]王静,谭放军,梁成亮,等.辣椒热激蛋白HSP90家族基因鉴定及分析[J].园艺学报,2020,47(4):665-674.[2]ASTIER J,JEANDROZ S,WENDEHENNE D.Nitric oxide synthase in plants:the surprise from algae[J].Plant Science:An International Journal of Experimental Plant Biology,2018,268:64-66.[3]KAYA C,ASHRAF M,AL-HUQAIL A A,et al.Silicon is dependent on hydrogen sulphide to improve boron toxicity tolerance in pepper plants by regulating the AsA-GSH cycle and glyoxalase system[J].Chemosphere,2020,257:127241.[4]韩敏,曹逼力,刘树森,等.低温胁迫下番茄幼苗根穗互作对其抗坏血酸-谷胱甘肽循环的影响[J].园艺学报,2019,46(1):65-73.[5]许婷婷,张婷婷,姚文思,等.热处理对低温胁迫下黄瓜活性氧代谢和膜脂组分的影响[J].核农学报,2020,34(1):85-93.[6]李进,雷斌,翟梦华,等.棉花幼苗AsA-GSH循环对低温胁迫的响应机制研究[J].核农学报,2021,35(1):221-228.[7]山溪,秦文斌,张振超,等.低温胁迫对不同品系甘蓝幼叶AsA-GSH循环代谢的影响[J].南方农业学报,2018,49(11):2230-2235.[8]ASTIER J,LINDERMAYR C.Nitric oxide-dependent posttranslational modification in plants:An update[J].International Journal of Molecular Sciences,2012,13(11):15193-15208.[9]MUKHERJEE S.Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants[J].Nitric Oxide,2019,82:25-34.[10]杨建军,张国斌,郁继华,等.盐胁迫下内源NO对黄瓜幼苗活性氧代谢和光合特性的影响[J].中国农业科学,2017,50(19):3778-3788.[11]袁满,徐迎春,牛叶青,等.乙烯与NO互作对镉胁迫下荷花的抗坏血酸-谷胱甘肽循环的影响[J].应用生态学报,2018,29(10):3433-3440.[12]KOV〖AKCˇ〗IK J,KLEJDUS B,BABULA P.Oxidative stress,uptake and bioconversion of 5-fluorouracil in algae[J].Chemosphere,2014,100:116-123.[13]尚宏芹,高昌勇.外源NO对高温胁迫下辣椒幼苗生长和生理指标的影响[J].核农学报,2015,29(8):1617-1623.[14]高春华,冯波,曹芳,等.施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响[J].中国农业科学,2020,53(21):4365-4375.[15]杨娅倩.外源亚精胺对高温胁迫下葡萄幼苗生理生化特性的影响[D].泰安:山东农业大学,2020.[16]陈秀萍,贺漫媚,王伟,等.高温胁迫对2种兜兰叶片生理生化指标的影响[J].中国农学通报,2020,36(28):72-77.[17]ZHANG X,LIU Y,LIU Q,et al.Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of tall fescue seedlings response to low-light stress[J].Environmental and Experimental Botany,2018,155:226-238.[18]ZHOU Y H,YU J Q,HUANG L F,et al.The relationship between CO2 assimilation,photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery[J].Plant,Cell & Environment,2004,27(12):1503-1514.[19]吴雪霞,张圣美,杨左芬,等.短期温度胁迫对西葫芦叶片抗坏血酸代谢系统的影响[J].上海农业学报,2020,36(1):53-58.[20]MURSHED R,LOPEZ-LAURI F,SALLANON H.Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L.,cv.Micro-tom)[J].Physiology and Molecular Biology of Plants,2013,19(3):363-378.[21]HANCOCK J T,WHITEMAN M.Hydrogen sulfide signaling:interactions with nitric oxide and reactive oxygen species[J].Annals of the New York Academy of Sciences,2016,1365(1):5-14.[22]SAMI F,FAIZAN M,FARAZ A,et al.Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance,NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress[J].Nitric Oxide:Biology and Chemistry,2018,73:22-38.[23]BAUDOUIN E,HANCOCK J T.Nitric oxide signaling in plants[J].Frontiers in Plant Science,2014(4):553.[24]关美艳.一氧化氮清除系统在拟南芥应答镉胁迫过程中的作用及其机制[D].杭州:浙江大学,2018.[25]骆巧娟,苏桐,魏小红.信号分子对盐胁迫番茄种子萌发及NP24和PR-5基因表达的影响[J].分子植物育种,2019,17(2):370-376.[26]LIANG Y,ZHENG P,LI S,et al.Nitrate reductase-dependent NO production is involved in H2 S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes[J].Scientia Horticulturae,2018,229:207-214.[27]HUANG D J,HUO J Q,ZHANG J,et al.Protein S-nitrosylation in programmed cell death in plants[J].Cellular and Molecular Life Sciences,2019,76(10):1877-1887.[28]FENG J,CHEN L,ZUO J.Protein S-Nitrosylation in plants:current progresses and challenges[J].Journal of Integrative Plant Biology,2019,61(12):1206-1223.[29]SHAN C,WANG B,SUN H,et al.H2S induces NO in the regulation of AsA-GSH cycle in wheat seedlings by water stress[J].Protoplasma,2020,257(5):1487-1493.[30]李凯,马利萍,杨天一,等.外源NO对钠盐胁迫下苹果砧木M26幼苗光合和生理特性的影响[J].北方园艺,2022(16):23-30.[31]KAYA C.Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system[J].Physiologia Plantarum,2021,172(2):351-370.

Memo

Memo:
-
Last Update: 2024-08-08