[1]王静,谭放军,梁成亮,等.辣椒热激蛋白HSP90家族基因鉴定及分析[J].园艺学报,2020,47(4):665-674.[2]ASTIER J,JEANDROZ S,WENDEHENNE D.Nitric oxide synthase in plants:the surprise from algae[J].Plant Science:An International Journal of Experimental Plant Biology,2018,268:64-66.[3]KAYA C,ASHRAF M,AL-HUQAIL A A,et al.Silicon is dependent on hydrogen sulphide to improve boron toxicity tolerance in pepper plants by regulating the AsA-GSH cycle and glyoxalase system[J].Chemosphere,2020,257:127241.[4]韩敏,曹逼力,刘树森,等.低温胁迫下番茄幼苗根穗互作对其抗坏血酸-谷胱甘肽循环的影响[J].园艺学报,2019,46(1):65-73.[5]许婷婷,张婷婷,姚文思,等.热处理对低温胁迫下黄瓜活性氧代谢和膜脂组分的影响[J].核农学报,2020,34(1):85-93.[6]李进,雷斌,翟梦华,等.棉花幼苗AsA-GSH循环对低温胁迫的响应机制研究[J].核农学报,2021,35(1):221-228.[7]山溪,秦文斌,张振超,等.低温胁迫对不同品系甘蓝幼叶AsA-GSH循环代谢的影响[J].南方农业学报,2018,49(11):2230-2235.[8]ASTIER J,LINDERMAYR C.Nitric oxide-dependent posttranslational modification in plants:An update[J].International Journal of Molecular Sciences,2012,13(11):15193-15208.[9]MUKHERJEE S.Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants[J].Nitric Oxide,2019,82:25-34.[10]杨建军,张国斌,郁继华,等.盐胁迫下内源NO对黄瓜幼苗活性氧代谢和光合特性的影响[J].中国农业科学,2017,50(19):3778-3788.[11]袁满,徐迎春,牛叶青,等.乙烯与NO互作对镉胁迫下荷花的抗坏血酸-谷胱甘肽循环的影响[J].应用生态学报,2018,29(10):3433-3440.[12]KOV〖AKCˇ〗IK J,KLEJDUS B,BABULA P.Oxidative stress,uptake and bioconversion of 5-fluorouracil in algae[J].Chemosphere,2014,100:116-123.[13]尚宏芹,高昌勇.外源NO对高温胁迫下辣椒幼苗生长和生理指标的影响[J].核农学报,2015,29(8):1617-1623.[14]高春华,冯波,曹芳,等.施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响[J].中国农业科学,2020,53(21):4365-4375.[15]杨娅倩.外源亚精胺对高温胁迫下葡萄幼苗生理生化特性的影响[D].泰安:山东农业大学,2020.[16]陈秀萍,贺漫媚,王伟,等.高温胁迫对2种兜兰叶片生理生化指标的影响[J].中国农学通报,2020,36(28):72-77.[17]ZHANG X,LIU Y,LIU Q,et al.Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of tall fescue seedlings response to low-light stress[J].Environmental and Experimental Botany,2018,155:226-238.[18]ZHOU Y H,YU J Q,HUANG L F,et al.The relationship between CO2 assimilation,photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery[J].Plant,Cell & Environment,2004,27(12):1503-1514.[19]吴雪霞,张圣美,杨左芬,等.短期温度胁迫对西葫芦叶片抗坏血酸代谢系统的影响[J].上海农业学报,2020,36(1):53-58.[20]MURSHED R,LOPEZ-LAURI F,SALLANON H.Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L.,cv.Micro-tom)[J].Physiology and Molecular Biology of Plants,2013,19(3):363-378.[21]HANCOCK J T,WHITEMAN M.Hydrogen sulfide signaling:interactions with nitric oxide and reactive oxygen species[J].Annals of the New York Academy of Sciences,2016,1365(1):5-14.[22]SAMI F,FAIZAN M,FARAZ A,et al.Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance,NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress[J].Nitric Oxide:Biology and Chemistry,2018,73:22-38.[23]BAUDOUIN E,HANCOCK J T.Nitric oxide signaling in plants[J].Frontiers in Plant Science,2014(4):553.[24]关美艳.一氧化氮清除系统在拟南芥应答镉胁迫过程中的作用及其机制[D].杭州:浙江大学,2018.[25]骆巧娟,苏桐,魏小红.信号分子对盐胁迫番茄种子萌发及NP24和PR-5基因表达的影响[J].分子植物育种,2019,17(2):370-376.[26]LIANG Y,ZHENG P,LI S,et al.Nitrate reductase-dependent NO production is involved in H2 S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes[J].Scientia Horticulturae,2018,229:207-214.[27]HUANG D J,HUO J Q,ZHANG J,et al.Protein S-nitrosylation in programmed cell death in plants[J].Cellular and Molecular Life Sciences,2019,76(10):1877-1887.[28]FENG J,CHEN L,ZUO J.Protein S-Nitrosylation in plants:current progresses and challenges[J].Journal of Integrative Plant Biology,2019,61(12):1206-1223.[29]SHAN C,WANG B,SUN H,et al.H2S induces NO in the regulation of AsA-GSH cycle in wheat seedlings by water stress[J].Protoplasma,2020,257(5):1487-1493.[30]李凯,马利萍,杨天一,等.外源NO对钠盐胁迫下苹果砧木M26幼苗光合和生理特性的影响[J].北方园艺,2022(16):23-30.[31]KAYA C.Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system[J].Physiologia Plantarum,2021,172(2):351-370.