|Table of Contents|

Effects of AM Fungi and Exogenous Phosphorus on Photosynthetic Physiology of Camellia oleifera Seedlings Under Aluminum Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年14
Page:
34-43
Research Field:
Publishing date:

Info

Title:
Effects of AM Fungi and Exogenous Phosphorus on Photosynthetic Physiology of Camellia oleifera Seedlings Under Aluminum Stress
Author(s):
ZENG WeijunLIU Yan
(Guizhou Institute of Biology,Guiyang,Guizhou 550009)
Keywords:
arbuscular mycorrhizal fungiphosphate fertilizerCamellia oleiferaaluminum stressphotosynthetic physiology
PACS:
S 794.4
DOI:
10.11937/bfyy.20234469
Abstract:
The One-year-old common Camellia oleifera seedlings and four species of arbuscular mycorrhizal fungi (AMF) were used as experimental materials,the pot experiment was conducted.The seedlings were cultivated for 8 months under combinations of phosphorus (0,30,60,120 mg·L-1) and aluminum (0,1,2,3 mmol·L-1) treatments.The effects of AMF and exogenous phosphorus on the photosynthetic physiology of Camellia oleifera seedlings under aluminum stress were studied,in order to provide reference for further research on the mechanisms of exogenous phosphorus and arbuscular mycorrhizal fungi in alleviating aluminum stress.The results showed that among the four AMF species,Funneliformis mosseae had the highest infection rate.Inoculating seedlings with Funneliformis mosseae increased the net photosynthetic rate,stomatal conductance,transpiration rate,chlorophyll content,carotenoids,and CO2 utilization efficiency by 295.19%,381.48%,297.86%,57.63%,172.75% and 142.00%,respectively,compared to the control.Under aluminum stress,inoculation with Funneliformis mosseae increased the sensitivity of Camellia oleifera seedlings′ photosynthetic physiology response.The net photosynthetic rate,stomatal conductance,transpiration rate,chlorophyll content,non-photochemical quenching parameters,non-photochemical quenching quantum yield,root dry weight,and underground stem were higher under high aluminum stress.Exogenous phosphorus addition at concentrations below 120 mg·L-1 alleviated the effects of aluminum stress on Funneliformis mosseae mycorrhizal seedlings′ photosynthetic physiology,mainly by significantly increasing their net photosynthetic rate and root dry weight.In summary,soil aluminum toxicity inhibited the photosynthesis of Camellia oleifera,thereby affecting its growth and development. The synergistic effect of exogenous phosphorus and arbuscular mycorrhizal furgi formation effectively alleviated the impact of aluminum stress on Camellia oleiferaphotosynthetic physiology.

References:

[1]何云,曾明.丛枝菌根真菌对植物耐铝性的影响[J].北方园艺,2015(13):181-185.[2]王艳阳,常顺利,王诗慧,等.铝胁迫及酸度对天山雪岭云杉菌根真菌生长的影响[J].新疆大学学报(自然科学版),2020,37(1):55-62.[3]MATSUMOTO H.Cell biology of aluminum toxicity and tolerance in higher plants[J].International Review of Cytology,2000,200:1-46.[4]MORITA A,YANAGISAWA O,MAEDA S,et al.Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J].Soil Science and Plant Nutrition,2011,57(6):796-802.[5]郭朋.柑橘耐铝的分子生理机制及硫对铝毒的缓解[D].福州:福建农林大学,2018.[6]王小平,刘鹏,罗虹,等.铝氟交互处理对茶树生理特性的影响[J].园艺学报,2009,36(9):1359-1364.[7]李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社,2001.[8]RUFYIKIRI G,DECLERCK S,DUFEY J E,et al.Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants[J].New Phytologist,2000,148(2):343-352.[9]AGUILERA P,CUMMING J,OEHL F,et al.Diversity of arbuscular mycorrhizal fungi in acidic soils and their contribution to aluminum phytotoxicity alleviation[J].Springer International Publishing,2015,24:203-228.[10]侯文娟,胡厚臻,鲁莹莹,等.磷对铝胁迫下尾巨桉生长生理方面的缓解作用[J].东北林业大学学报,2016,44(5):5-9,19.[11]JIANG H X,TANG N,ZHENG J G,et al.Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings[J].Physiologia Plantarum,2009,137(3):298-311.[12]YANG L T,ZHOU Y F,WANG Y Y,et al.Phosphorus-mediated alleviation of aluminum toxicity revealed by the iTRAQ technique in Citrus grandis roots[J].PLoS One,2019,14(10):e0223516.[13]林宇岚,李正昀,张林平,等.有机磷和AM真菌对油茶生长、根系形态和光合作用的影响[J].经济林研究,2021,39(1):121-128,210.[14]HE X,SHAO C,WU A,et al.Arbuscular mycorrhizal fungi enhance nutrient acquisition and reduce aluminum toxicity in Lespedeza formosa under acid rain[J].Environmental Science and Pollution Research International,2022,29(20):29904-29916.[15]庄瑞林.中国油茶[M].2版.北京:中国林业出版社,2008.[16]黄丽媛.油茶对铝的吸收积累及其耐性机理研究[D].长沙:中南林业科技大学,2017.[17]PEUELAS J,FILELLA I.Visible and near-infrared reflectance techniques for diagnosing plant physiological status[J].Trends in Plant Science,1998,3(4):151-156.[18]何维明,马风云.水分梯度对沙地柏幼苗荧光特征和气体交换的影响[J].植物生态学报,2000,24(5):630-634.[19]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.[20]王幼珊,张淑彬,张美庆.中国丛枝菌根真菌资源与种质资源[M].北京:中国农业出版社,2012.[21]WU Q S,XIA R X,ZOU Y N.Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress[J].Journal of Plant Physiology,2006,163(11):1101-1110.[22]GMEZ-BELLOT M J,ORTUOM F,NORTES P A,et al.Mycorrhizal euonymus plants and reclaimed water:Biomass,water status and nutritional responses[J].Scientia Horticulturae,2015,186:61-69.[23]冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6):901-910.[24]翟中和,王喜忠,丁明孝.细胞生物学[M].4版.北京:高等教育出版社,2011.[25]单运峰,冯宗炜,陈楚莹.模拟酸雨对七种森林植物生物量的影响[J].生态学报,1989,9(3):274-276.[26]VON UEXKLL H R,MUTERT E.Global extent,development and economic impact of acid soils[J].Plant and Soil,1995,171:1-15.[27]HAMPP R S H.Effect of aluminium ions on 14 CO2-fixation and membrane system of isolated spinach chloroplasts[J].Zeitschrift Für Pflanzenphysiologie,1975,76:300-306.[28]刘森,李鹏,李春华,等.泡桐幼苗对铝胁迫的生理响应[J].中南林业科技大学学报,2020,40(6):44-52,62.[29]LI C,XU H,XU J,et al.Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant[J].Acta Physiologiae Plantarum,2011,33(3):973-978.[30]HAJIBOLAND R,BASTANI S,BAHRAMI-RAD S,et al.Interactions between aluminum and boron in tea (Camellia sinensis) plants[J].Acta Physiologiae Plantarum,2015,37(3):54.[31]张爽,廖红,王秀荣.不同丛枝菌根真菌对大豆耐酸、铝能力的影响[J].中国油料作物学报,2014,36(5):616-622.[32]MO X H,ZHANG M K,LIANG C Y,et al.Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes[J].Plant Physiology and Biochemistry,2019,139:697-706.[33]LIAO H,WAN H Y,SHAFF J,et al.Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance.Exudation of specific organic acids from different regions of the intact root system[J].Plant Physiology,2006,141:674-684.[34]于姣妲,夏丽丹,殷丹阳,等.磷素对杉木幼苗耐铝性的影响机制[J].林业科学,2018,54(5):36-47.[35]SUN Q B,SHEN R F,ZHAO X Q,et al.Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L.cuneata under relatively high Al stress[J].Annals of Botany,2008,102(5):795-804.

Memo

Memo:
-
Last Update: 2024-08-08