[1]何云,曾明.丛枝菌根真菌对植物耐铝性的影响[J].北方园艺,2015(13):181-185.[2]王艳阳,常顺利,王诗慧,等.铝胁迫及酸度对天山雪岭云杉菌根真菌生长的影响[J].新疆大学学报(自然科学版),2020,37(1):55-62.[3]MATSUMOTO H.Cell biology of aluminum toxicity and tolerance in higher plants[J].International Review of Cytology,2000,200:1-46.[4]MORITA A,YANAGISAWA O,MAEDA S,et al.Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J].Soil Science and Plant Nutrition,2011,57(6):796-802.[5]郭朋.柑橘耐铝的分子生理机制及硫对铝毒的缓解[D].福州:福建农林大学,2018.[6]王小平,刘鹏,罗虹,等.铝氟交互处理对茶树生理特性的影响[J].园艺学报,2009,36(9):1359-1364.[7]李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社,2001.[8]RUFYIKIRI G,DECLERCK S,DUFEY J E,et al.Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants[J].New Phytologist,2000,148(2):343-352.[9]AGUILERA P,CUMMING J,OEHL F,et al.Diversity of arbuscular mycorrhizal fungi in acidic soils and their contribution to aluminum phytotoxicity alleviation[J].Springer International Publishing,2015,24:203-228.[10]侯文娟,胡厚臻,鲁莹莹,等.磷对铝胁迫下尾巨桉生长生理方面的缓解作用[J].东北林业大学学报,2016,44(5):5-9,19.[11]JIANG H X,TANG N,ZHENG J G,et al.Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings[J].Physiologia Plantarum,2009,137(3):298-311.[12]YANG L T,ZHOU Y F,WANG Y Y,et al.Phosphorus-mediated alleviation of aluminum toxicity revealed by the iTRAQ technique in Citrus grandis roots[J].PLoS One,2019,14(10):e0223516.[13]林宇岚,李正昀,张林平,等.有机磷和AM真菌对油茶生长、根系形态和光合作用的影响[J].经济林研究,2021,39(1):121-128,210.[14]HE X,SHAO C,WU A,et al.Arbuscular mycorrhizal fungi enhance nutrient acquisition and reduce aluminum toxicity in Lespedeza formosa under acid rain[J].Environmental Science and Pollution Research International,2022,29(20):29904-29916.[15]庄瑞林.中国油茶[M].2版.北京:中国林业出版社,2008.[16]黄丽媛.油茶对铝的吸收积累及其耐性机理研究[D].长沙:中南林业科技大学,2017.[17]PEUELAS J,FILELLA I.Visible and near-infrared reflectance techniques for diagnosing plant physiological status[J].Trends in Plant Science,1998,3(4):151-156.[18]何维明,马风云.水分梯度对沙地柏幼苗荧光特征和气体交换的影响[J].植物生态学报,2000,24(5):630-634.[19]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.[20]王幼珊,张淑彬,张美庆.中国丛枝菌根真菌资源与种质资源[M].北京:中国农业出版社,2012.[21]WU Q S,XIA R X,ZOU Y N.Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress[J].Journal of Plant Physiology,2006,163(11):1101-1110.[22]GMEZ-BELLOT M J,ORTUOM F,NORTES P A,et al.Mycorrhizal euonymus plants and reclaimed water:Biomass,water status and nutritional responses[J].Scientia Horticulturae,2015,186:61-69.[23]冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6):901-910.[24]翟中和,王喜忠,丁明孝.细胞生物学[M].4版.北京:高等教育出版社,2011.[25]单运峰,冯宗炜,陈楚莹.模拟酸雨对七种森林植物生物量的影响[J].生态学报,1989,9(3):274-276.[26]VON UEXKLL H R,MUTERT E.Global extent,development and economic impact of acid soils[J].Plant and Soil,1995,171:1-15.[27]HAMPP R S H.Effect of aluminium ions on 14 CO2-fixation and membrane system of isolated spinach chloroplasts[J].Zeitschrift Für Pflanzenphysiologie,1975,76:300-306.[28]刘森,李鹏,李春华,等.泡桐幼苗对铝胁迫的生理响应[J].中南林业科技大学学报,2020,40(6):44-52,62.[29]LI C,XU H,XU J,et al.Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant[J].Acta Physiologiae Plantarum,2011,33(3):973-978.[30]HAJIBOLAND R,BASTANI S,BAHRAMI-RAD S,et al.Interactions between aluminum and boron in tea (Camellia sinensis) plants[J].Acta Physiologiae Plantarum,2015,37(3):54.[31]张爽,廖红,王秀荣.不同丛枝菌根真菌对大豆耐酸、铝能力的影响[J].中国油料作物学报,2014,36(5):616-622.[32]MO X H,ZHANG M K,LIANG C Y,et al.Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes[J].Plant Physiology and Biochemistry,2019,139:697-706.[33]LIAO H,WAN H Y,SHAFF J,et al.Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance.Exudation of specific organic acids from different regions of the intact root system[J].Plant Physiology,2006,141:674-684.[34]于姣妲,夏丽丹,殷丹阳,等.磷素对杉木幼苗耐铝性的影响机制[J].林业科学,2018,54(5):36-47.[35]SUN Q B,SHEN R F,ZHAO X Q,et al.Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L.cuneata under relatively high Al stress[J].Annals of Botany,2008,102(5):795-804.