|Table of Contents|

Anatomical Structure Changes of the Ammopiptanthus mongolicus Adapting to Arid Environment

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年16
Page:
57-64
Research Field:
Publishing date:

Info

Title:
Anatomical Structure Changes of the Ammopiptanthus mongolicus Adapting to Arid Environment
Author(s):
XING Zhongyu12XING Yukun12LI Yinxiang12YANG Yuewen12HU Zhijian1CAO Gongxiang12
(1.Forestry Research Institute,Inner Mongolia Academy of Forestry Science,Hohhot,Inner Mongolia 010010;2.Inner Mongolia Ordos Forest Ecosystem Research Station,Ordos,Inner Mongolia 016100)
Keywords:
Ammopiptanthus mongolicusparaffin section methodanatomical structureswater stressxeromorphic structures
PACS:
Q 944.5;S 793.9
DOI:
10.11937/bfyy.20234138
Abstract:
Taking Ammopiptanthus mongolicus seedlings as test materials,the effects of different soil moisture contents on the anatomical structure of roots,stems,and leaves were studied using paraffin sectioning method,in order to provide reference for the development and utilization of Ammopiptanthus mongolicus.The results showed that Ammopiptanthus mongolicus could still grow normally when the soil moisture content was 2%-4%,but there were differences in the structure of roots,stems and leaves of Ammopiptanthus mongolicus under different water contents.With the decrease of soil moisture,the root growth of Ammopiptanthus mongolicus was more slender,the degree of lignification was deeper,and the relative thickness of the periderm increased.The drought resistance of the plant was improved by developing and differentiating the root structure.The stem and leaf epidermis of Ammopiptanthus mongolicus were attached to the cuticle,and there were cortical vascular bundles in the stem cortex to improve the transport capacity.At the same time,the pith was still developed when the soil moisture was low,showing strong water storage capacity.The leaf of Ammopiptanthus mongolicus was an isobilateral leaf.With the decrease of soil moisture,the leaf thickness,cuticle thickness,hole depth,palisade tissue/sponge tissue ratio,main vein vascular tissue and lignification degree all increased to varying degrees.It could adapt to the arid environment by reducing water loss,improving gas exchange,improving leaf area utilization and photosynthesis.

References:

[1]郝文芳,周禧琳,王海珍,等.濒危植物小沙冬青研究进展[J].植物科学学报,2019,37(1):109-115.[2]刘美芹,卢存福,尹伟伦.珍稀濒危植物沙冬青生物学特性及抗逆性研究进展[J].应用与环境生物学报,2004,10(3):384-388.[3]石丽丽.蒙古沙冬青和新疆沙冬青叶片解剖结构特征及其抗旱适应性[D].兰州:甘肃农业大学,2016.[4]FAHMY G M.Leaf anatomy and its relation to the ecophysiology of some non-succulent desert plants from Egypt[J].Journal of Arid Environments,1997,36(3):499-525.[5]赵祥,董宽虎,张垚,等.达乌里胡枝子根解剖结构与其抗旱性的关系[J].草地学报,2011,19(1):13-19.[6]胡云,燕玲,李红.14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境,2006,20(1):202-208.[7]王勋陵,马骥.从旱生植物叶结构探讨其生态适应的多样性[J].生态学报,1999,19(6):787-792.[8]张荣.沙冬青果实形态特征与扩散特征的生态学特性研究[D].呼和浩特:内蒙古农业大学,2019.[9]赵鹏,雍晓鹏,胡国臣,等.濒危植物新疆沙冬青遗传多样性的RAPD分析[J].干旱区资源与环境,2016,30(3):74-79.[10]姜生秀,严子柱,吴昊.PEG6000模拟干旱胁迫对2种沙冬青种子萌发的影响[J].西北林学院学报,2018,33(5):130-136.[11]王彦芹,焦培培,李彬,等.珍稀濒危植物新疆沙冬青的组织培养和植株再生[J].植物生理学通讯,2010,46(4):375-376.[12]段慧荣,李毅,马彦军.PEG胁迫对沙冬青种子萌发过程的影响[J].水土保持研究,2011,18(3):221-225.[13]王彩鑫.不同地理分布区蒙古沙冬青叶片解剖结构研究[D].呼和浩特:内蒙古农业大学,2020.[14]李晓燕.沙冬青幼苗对干旱和高温胁迫的响应机制[D].呼和浩特:内蒙古农业大学,2018.[15]王文,蒋文兰,谢忠奎,等.黄土丘陵地区唐古特白刺根际土壤水分与根系分布研究[J].草业学报,2013,22(1):20-28.[16]陈小红,徐扬,刘韩,等.川西高原4种高山海棠的根茎解剖结构特征及其抗旱响应策略分析[J].西北植物学报,2017,37(7):1296-1302.[17]周智彬,李培军.我国旱生植物的形态解剖学研究[J].干旱区研究,2002,19(2):35-40.[18]唐茜茜,木巴热克·阿尤普,许盼云,等.扁桃不同砧木资源根系解剖结构对干旱胁迫的响应[J].新疆农业科学,2023,60(4):897-907.[19]黄振英,吴鸿,胡正海.30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报,1997,21(6):521-530.[20]金芳玉.绵刺的营养器官解剖结构与抗旱适应性的关系[D].呼和浩特:内蒙古农业大学,2014.[21]韩峰,孙耀文,马迎梅,等.四种沙参属植物营养器官解剖结构及抗旱性分析[J/OL].分子植物育种,(2022-10-21)[2023-05-07].https://kns.cnki.net/kcms/detail/46.1068.S.20221021.1432.006.html.[22]公维昌,庄丽,赵文勤,等.两种盐生植物解剖结构的生态适应性[J].生态学报,2009,29(12):6764-6771.[23]扈顺.四合木繁殖特性及扦插生根解剖学研究[D].呼和浩特:内蒙古农业大学,2014.[24]YIOTIS C,MANETAS Y,PSARAS G K.Leaf and green stem anatomy of the drought deciduous Mediterranean shrub Calicotome villosa (Poiret) Link.(Leguminosae)[J].Flora-Morphology,Distribution,Functional Ecology of Plants,2006,201(2):102-107.[25]杨小英,黄艳竹,郝春磊,等.干旱胁迫对彩菊切花幼苗根系构型和生理活性的影响[J].北方园艺,2024(2):47-54.[26]胡杜娟.胡颓子科不同品种沙棘的抗旱性比较研究[D].临汾:山西师范大学,2017.[27]崔秀萍,刘果厚,张瑞麟.浑善达克沙地不同生境下黄柳叶片解剖结构的比较[J].生态学报,2006,26(6):1842-1847.[28]张香凝,王保平,孙向阳,等.Larrea tridentata叶片解剖结构与保水特性的研究[J].生态环境学报,2011,20(11):1634-1637.[29]赵高卷,平盼,马焕成.干热河谷木棉科三种植物根茎叶水分传输的解剖结构比较研究[J].干旱区资源与环境,2016,30(1):162-168.[30]田英,倪细炉,于海宁,等.6种抗旱灌木叶片形态解剖学特征[J].中国农学通报,2010,26(22):113-117.[31]张海娜,苏培玺,李善家,等.荒漠区植物光合器官解剖结构对水分利用效率的指示作用[J].生态学报,2013,33(16):4909-4918.[32]邓彦斌,姜彦成,刘健.新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究[J].植物生态学报,1998,22(2):164-170.

Memo

Memo:
-
Last Update: 2024-09-04