|Table of Contents|

Effects of Long-term Cotton Straw Return on the Chemical Structure of Soil Organic Carbon

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年10
Page:
78-84
Research Field:
Publishing date:

Info

Title:
Effects of Long-term Cotton Straw Return on the Chemical Structure of Soil Organic Carbon
Author(s):
KANG BoZHANG JunTANG PengfeiZHANG Fenghua
(Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps,Shihezi University,Shihezi,Xinjiang 832061)
Keywords:
returning straw to the fieldsoil organic carboninfrared spectroscopyfunctional groupsstability
PACS:
S 153.6
DOI:
10.11937/bfyy.20234030
Abstract:
Taking cotton straw as the test material and fourier transform infrared spectroscopy (FTIR) analysis method,with saline alkali wasteland as the control (0 year),the basic physicochemical properties and organic carbon chemical structure of cotton field soil after 5,10,15 years,and 20 years of cotton straw return were set,the change trend of soil organic carbon (SOC) structure under the condition of cotton stalk returning to field was studied,in order to provide reference for studying soil organic carbon sequestration under the addition of exogenous organic matter.The results showed that long-term cotton straw returning significantly increased soil organic carbon content,while the soil moisture content in the 20-40 cm soil layer was also increased,reducing soil conductivity.With the extension of the cotton straw returning period,the soil organic carbon lipid group characteristics showed a trend of first increasing and then decreasing,with the highest value after returning for 15 years.After returning straw to the field for 20 years,the soil organic carbon aromaticity increased,and the organic carbon structure changed from simple to complex.Overall,long-term return of cotton stalks to the field simplifies the chemical structure of soil organic carbon.

References:

[1]孟婷婷,杨亮彦,孔辉,等.生物有机肥施用量对土壤有机碳组分及酶活性的影响[J].北方园艺,2022(17):86-91.[2]邱建军,王立刚,李虎,等.农田土壤有机碳含量对作物产量影响的模拟研究[J].中国农业科学,2009,42(1):154-161.[3]唐薇,赵志忠,王军广,等.不同耕作制度下稻田土壤有机碳垂直分布季节变化及其影响因素:以海南省定安县为例[J].西南农业学报,2021,34(9):1932-1938.[4]朱万泽,马胜兰,王文武,等.土壤微生物碳利用效率研究进展[J].山地学报,2023,41(1):1-18.[5]任淑英,李景霞,田成江,等.浅谈棉花秸秆粉碎还田技术的实践[J].农业技术与装备,2007(8):24.[6]杨滨娟,钱海燕,黄国勤,等.秸秆还田及其研究进展[J].农学学报,2012,2(5):1-4,28.[7]兰珊,赵宇彭,孙秦玉.秸秆资源化利用及产业发展机制分析[J].农机使用与维修,2023(4):85-88.[8]戚亮,曹肆林,卢勇涛,等.新疆兵团棉花秸秆还田技术应用现状与思考[J].安徽农业科学,2015,43(36):154-156.[9]郑重,赖先齐,邓湘娣,等.新疆棉区秸秆还田技术和养分需要量的初步估算[J].棉花学报,2000(5):264-266.[10]李双翼,侯淑艳,窦森,等.长期秸秆还田对土壤有机碳和胡敏酸结构特征的影响[J].吉林农业大学学报,2023(6):1-10.[11]盛明,龙静泓,雷琬莹,等.秸秆还田对黑土团聚体内有机碳红外光谱特征的影响[J].土壤与作物,2020,9(4):355-366.[12]王峥宇,廉宏利,孙悦,等.秸秆还田深度对春玉米农田土壤有机碳、氮含量和土壤酶活性的影响[J].农业资源与环境学报,2021,38(4):636-646.[13]石含之,赵沛华,黄永东,等.秸秆还田对土壤有机碳结构的影响[J].生态环境学报,2020,29(3):536-542.[14]张立进,余小芸,巢思琴,等.稻秆与紫云英协同还田对水稻产量和土壤有机碳的影响[J].作物研究,2023,37(2):183-188.[15]王学霞,张磊,梁丽娜,等.秸秆还田对麦玉系统土壤有机碳稳定性的影响[J].农业环境科学学报,2020,39(8):1774-1782.[16]杨宏伟,王小利,龙大勇,等.秸秆和生物炭还田对稻田土壤有机碳及其矿化的影响[J].江苏农业科学,2023,51(11):226-232.[17]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.[18]张艳,胡亚鲜,郭胜利.长期施用微肥条件下微量元素和有机官能团在团聚体中的积累特征[J].土壤学报,2022,59(5):1420-1431.[19]吴景贵,席时权,姜岩.红外光谱在土壤有机质研究中的应用[J].光谱学与光谱分析,1998,18(1):52-57.[20]冯秋苹,刘玉涛,郭勇智,等.不同秸秆还田方式对土壤团聚体稳定性及有机碳含量的影响[J].吉林农业大学学报,2023,45(5):564-571.[21]赵哲萱,冉成,孟祥宇,等.秸秆还田对苏打盐碱稻区土壤团聚体分布及有机碳含量的影响[J].吉林农业大学学报,2023,45(5):582-591.[22]胡雪纯,解文艳,马晓楠,等.长期秸秆还田对旱地玉米土壤有机碳及碳库管理指数的影响[J].中国农学通报,2022,38(34):8-13.[23]牟云芳,史海滨,闫建文,等.秸秆和氮肥耦合管控对盐渍化土壤地力综合效应的影响[J/OL].农业环境科学学报,(2024-01-25)[2024-02-06].https://kns.cnki.net/kns8s/defaultresult/index.[24]胡雅,程杰,魏静.不同还田材料对废弃宅基地复垦土壤电导率的影响[J].西部大开发(土地开发工程研究),2018,3(9):26-30.[25]刘会芳,唐光木,孙宁川,等.棉秆炭化还田对棉花生长及土壤理化特性的影响[J].新疆农业科学,2018,55(9):1710-1716.[26]吴从稳,陈小兵,单晶晶,等.棉秆不同处理方式对滨海盐碱土理化性质和棉花产量的影响[J].中国土壤与肥料,2016(5):96-104.[27]蒋楠.麦棉两熟种植模式对棉花产量形成和棉田土壤理化性质影响的研究[D].南京:南京农业大学,2016.[28]刘锦涛,孙巨龙,冯璐,等.棉花不同种植模式下土壤水分空间变化规律[J].江苏农业科学,2022,50(10):226-234.[29]赵秀婷,辉朝茂,朱书红,等.土壤有机质含量及其红外光谱特征对甜龙竹不同种植年限的响应[J].江西农业大学学报,2022,44(6):1448-1456.[30]HAO X X,HAN X Z,WANG S Y,LI L J.Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol[J].Soil and Tillage Research,2022,215:105221.[31]曹莹菲,张红,赵聪,等.秸秆腐解过程中结构的变化特征[J].农业环境科学学报,2016,35(5):976-984.[32]陈晓东,吴景贵.不同有机物料施用下土壤颗粒有机碳红外光谱特征[J].分析化学,2021,49(3):468-473.[33]朱姝,窦森,关松,等.秸秆深还对土壤团聚体中胡敏素结构特征的影响[J].土壤学报,2016,53(1):127-136.[34]梁超,朱雪峰.土壤微生物碳泵储碳机制概论[J].中国科学(地球科学),2021,51(5):680-695.[35]张雯怡,姜振辉,潘丽霞,等.玉米秸秆及其生物质炭输入对毛竹林土壤有机碳化学组分与碳降解功能基因的影响[J].应用生态学报,2023,34(9):2383-2390.[36]ZHANG J,WEI Y,LIU J,et al.Effects of maize straw and its biochar application on organic and humic carbon in waterstable aggregates of a Mollisol in Northeast China:A fiveyear field experiment[J].Soil and Tillage Research,2019,190:1-9.[37]丛萍,逄焕成,王婧,等.粉碎与颗粒秸秆高量还田对黑土亚耕层土壤有机碳的提升效应[J].土壤学报,2020,57(4):811-823.[38]刘杰,马艳婷,王宪玲,等.渭北旱塬土地利用方式对土壤团聚体稳定性及其有机碳的影响[J].环境科学,2019,40(7):3361-3368.[39]朱雪峰,张春雨,郝艳杰,等.玉米秸秆覆盖还田量对免耕土壤有机碳中红外光谱特征的影响[J].应用生态学报,2021,32(8):2685-2692.[40]岳丹,蔡立群,齐鹏,等.小麦和玉米秸秆不同还田量下腐解特征及其养分释放规律[J].干旱区资源与环境,2016,30(3):80-85.[41]SCHOENHERR S,EBRAHIMI M,CZERMAK P.Lignin degradation processes and the purification of valuable products[M].Lignin-Trends and Applications:InTech,2018.[42]LI X,FU H,GUO D,et al.Partitioning soil respiration and assessing the carbon balance in a Setaria italica (L.) Beauv.Cropland on the Loess Plateau,Northern China[J].Soil Biology and Biochemistry,2010,42(2):337-346.[43]郭鑫,罗欢,许雪梅,等.不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J].草业学报,2023,32(5):83-93.[44]崔雪梅,米俊珍,刘景辉,等.膨润土与秸秆配施对根区土壤有机碳化学结构和酶活性的影响[J/OL].中国土壤与肥料,(2023-09-02)[2023-09-26].https://kns.cnki.net/kcms2/article/abstract?v=phUvsea1i7a4UrxKDu_B6l_EnnNJcZS9_J5sNDBiEDoaVlSwdiU4CgtvV6vNBetGM9MLdrvSnhh1qW4eI7 Q2fd46ngPDEPNu_DnDjEbjwMCEKezx2O2HivbtbK9vzNwfdw A4qmg5kbE=&uniplatform=NZKPT&language=CHS.[45]龚香宜,徐威,何炎志.溶解性有机质的光谱特征及其对土壤吸附β-HCH的影响[J].环境科学学报,2017,37(1):318-325.[46]刘亚军,蔡润发,李赟璟,等.湿地土壤微生物碳源代谢活性对不同水分条件的动态响应:以鄱阳湖为例[J].土壤,2018,50(4):705-711.

Memo

Memo:
-
Last Update: 2024-06-13