|Table of Contents|

Effects of Drought Stress on Growth and Physiological Indicators of Grafted Cucumber Seedlings

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年7
Page:
10-17
Research Field:
Publishing date:

Info

Title:
Effects of Drought Stress on Growth and Physiological Indicators of Grafted Cucumber Seedlings
Author(s):
CHAI WenchenYAN Shijiang
(College of Horticulture,Shanxi Agricultural University,Taiyuan,Shanxi 030031)
Keywords:
drought stressgraftingcucumbergrowthphysiological indicator
PACS:
S 642.2
DOI:
10.11937/bfyy.20233913
Abstract:
Taking cucumber ‘Zhongnong 18’ as the experimental material,black seed pumpkin was used as the rootstock during the seedling stage for grafting and root replacement.The grafted and self rooted seedlings were subjected to drought stress,and the plant height,stem diameter,dry matter weight,chlorophyll content,peroxidase (POD) activity,superoxide dismutase (SOD) activity,catalase (CAT) activity,malondialdehyde (MDA) content,root activity,abscisic acid (ABA) content,and zein (ZR) content were measured.The effects of drought stress on the growth and development of grafted cucumber seedlings were studied,in order to provide reference for the study of cucumber stress physiology.The results showed that the growth and development of both grafted and self-rooted seedlings were affected under drought stress,manifested as a slow accumulation of plant height,stem diameter,and dry matter weight.Compared with self-rooted seedlings,grafted seedlings had higher plant height,stem diameter,and dry matter weight,reaching 17.54 cm,6.24 mm and 1.2 g after 9 days of treatment,respectively.Further analysis of physiological indicators revealed that drought stress had a certain degree of inhibition on both grafted and self-rooted cucumber seedlings,manifested as an increase in chlorophyll content,POD activity,SOD activity,CAT activity and endogenous hormone content in the early stage,followed by a decrease in the later stage.MDA content gradually increased,and the root activity of grafted seedlings first increased and then decreased,while the root activity of self-rooted seedlings gradually decreased.The physiological indicators of grafted seedlings were higher than those of self-rooted seedlings,except for MDA content.The highest peaks of chlorophyll content,POD activity,SOD activity,CAT activity,MDA content,root activity and endogenous hormone content were 2.588 mg·g-1,6.229 U·g-1·min-1,254.098 U·g-1,212.341 U·g-1·min-1,11.052 mmol·g-1,3.577 μmol·g-1,12.578 ng·g-1.In conclusion grafted seedlings had a strong ability to resist drought and were less affected.They still maintained normal growth under adverse conditions,while self-rooted seedlings had poor drought resistance.Therefore,the use of grafting significantly improved the drought resistance of seedlings,which was simple and effective and can be applied in arid and water deficient areas.

References:

[1]周长久.现代蔬菜育种学[M].北京:科学技术文献出版社,1996.[2]刘静霖.干旱对黄瓜幼苗生理生长的影响[J].种子科技,2019,37(15):16-17.[3]肖凡,蒋景龙,段敏.干旱和复水条件下黄瓜幼苗生长和生理生化的响应[J].南方农业学报,2019,50(10):2241-2248.[4]王玉珏,付秋实,郑禾,等.干旱胁迫对黄瓜幼苗生长、光合生理及气孔特征的影响[J].中国农业大学学报,2010,15(5):12-18.[5]陈文妃,杜长霞,金佩颖,等.模拟干旱胁迫对黄瓜幼苗组织结构的影响[J].浙江农林大学学报,2017,34(6):1149-1154.[6]丁玲,吴雪,杜长霞,等.短期干旱胁迫对黄瓜幼苗叶片抗氧化系统的影响[J].浙江农林大学学报,2015,32(2):285-290.[7]杨若鹏,毕红才,李杰.水杨酸对黄瓜种子萌发及干旱胁迫下幼苗生长的影响[J].北方园艺,2018(6):23-29.[8]刘彩娟,吕春雨,艾希珍,等.黄腐酸对干旱胁迫下黄瓜光合特性及产量和品质的影响[J].应用生态学报,2022,33(5):1300-1310.[9]银珊珊,周国彦,顾博文,等.褪黑素引发对干旱胁迫下黄瓜幼苗生理特性的影响[J].中国农学通报,2022,38(19):30-36.[10]邓硕真,刘惠军,王洪芹,等.外源5-氨基乙酰丙酸对干旱胁迫下黄瓜种子萌发及幼苗生长的影响[J].湖北农业科学,2021,60(3):70-74,78.[11]陈露露,王秀峰,刘美,等.外源钙对干旱胁迫下黄瓜幼苗叶片膜脂过氧化和光合特性的影响[J].山东农业科学,2016,48(4):28-33.[12]周宝利,林桂荣,李宁义.蔬菜嫁接栽培[M].北京:中国农业出版社,1997.[13]王佳楠,商桑,田丽波,等.低温胁迫对嫁接苦瓜幼苗抗氧化系统的影响[J].热带作物学报,2018,39(2):237-245.[14]杨秀玲.黄瓜嫁接幼苗耐盐光合特性和WSC代谢生理调控研究[D].兰州:甘肃农业大学,2015.[15]张志焕.番茄砧木耐旱性鉴定及其嫁接苗对水分胁迫的响应[D].泰安:山东农业大学,2016.[16]于贤昌,邢禹贤,马红,等.黄瓜嫁接苗抗冷特性研究[J].园艺学报,1997,24(4):348-352.[17]冯炘,于贤昌,郭恒俊,等.低温胁迫对黄瓜嫁接苗和自根苗保护酶活性的影响[J].山东农业大学学报(自然科学版),2002,33(3):302-304.[18]高俊杰,秦爱国,于贤昌.低温胁迫对嫁接黄瓜叶片抗坏血酸-谷胱甘肽循环的影响[J].园艺学报,2009,36(2):215-220.[19]谭明明,张新英,付秋实,等.嫁接对铜胁迫下甜瓜幼苗生理特性的影响[J].应用生态学报,2014,25(12):3563-3572.[20]张曼义.干旱胁迫对黄瓜植株生长的影响机理及光谱估算模型的研究[D].南京:南京信息工程大学,2018.[21]徐小芳,罗庆熙,闫杰,等.干旱胁迫下外源物质对黄瓜幼苗的影响[J].北方园艺,2009(2):12-17.[22]潘瑞炽.植物生理学[M].7版.北京:高等教育出版社,2012.[23]张曼义,杨再强,侯梦媛.水分胁迫下黄瓜叶片光响应过程的模拟[J].中国农业气象,2017,38(10):644-654.[24]杨凤军,李天来,臧忠婧,等.等渗NaCl、干旱胁迫对番茄幼苗光合特性及叶绿体超微结构的影响[J].应用生态学报,2017,28(8):2588-2596.[25]齐曼·尤努斯,木合塔尔·扎热,塔衣尔·艾合买提.干旱胁迫下尖果沙枣幼苗的根系活力和光合特性[J].应用生态学报,2011,22(7):1789-1795.[26]郝敬虹,易旸,尚庆茂,等.干旱胁迫下外源水杨酸对黄瓜幼苗膜脂过氧化和光合特性的影响[J].应用生态学报,2012,23(3):717-723.[27]常青华.甘蓝萌发期和苗期抗旱性鉴定[D].重庆:西南大学,2012.[28]刘京萍,葛兴,李京霞,等.聚天冬氨酸锰(Ⅱ)对干旱胁迫下菠菜抗氧化酶活性和MDA含量的影响[J].北京联合大学学报(自然科学版),2012,26(2):39-43,50.[29]周晏起,卜庆雁.干旱胁迫下果树内源激素变化规律研究进展[J].北方果树,2011(3):1-4.[30]刘瑞香,杨劼,高丽.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报,2005,19(3):148-151,169.[31]马文涛.不同柑橘实生砧木的抗旱性[D].贵阳:贵州大学,2007.[32]刘长海,周莎莎,邹养军,等.干旱胁迫条件下不同抗旱性苹果砧木内源激素含量的变化[J].干旱地区农业研究,2012,30(5):94-98.

Memo

Memo:
-
Last Update: 2024-05-08