|Table of Contents|

Effects of Sodium Selenite on the Growth and Synthesis of Major Nutrients in the Mycelium of Coprinus comatus

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年7
Page:
112-119
Research Field:
Publishing date:

Info

Title:
Effects of Sodium Selenite on the Growth and Synthesis of Major Nutrients in the Mycelium of Coprinus comatus
Author(s):
TANG MaolinZHANG YangWANG YayiLI BokunLI Songling
(Academy of Agriculture and Forestry Sciences,Qinghai University,Xining,Qinghai 810016)
Keywords:
Coprinus comatussodium seleniteselenium richproteinpolysaccharides
PACS:
S 646.9
DOI:
10.11937/bfyy.20233239
Abstract:
Taking a Coprinus comatus strain Cc-900 as the experimental material,plate culture and liquid fermentation culture were used to study the effects of different concentrations of exogenous selenium on the growth,selenium enrichment,and protein and polysaccharide synthesis of a Coprinus comatus strain Cc-900,in order to provide reference for the cultivation and product development of Coprinus comatus.The results showed that the optimal tolerance of Coprinus comatus mycelium to selenium concentration was at 10 mg·kg-1 in solid culture medium and 3 mg·L-1 in liquid culture medium,whereas high concentrations of selenium caused reduction of mycelial activity and significant damage to mycelial growth.On the other hand,1.97 g·L-1 mycelium dry weight,38.24 mg·kg-1 selenium content of the mycelium powder,and a selenium enrichment coefficient at 12.75 were achieved at 3 mg·L-1 selenium in liquid culture medium.Likewise,crude protein and polysaccharide contents in the mycelium was 2.58% and 3 081.82 μg·g-1,respectively,while soluble protein and polysaccharide contents in the fermentation broth was 50.98 μg·mL-1 and 266.38 μg·mL-1,respectively.The results showed that Selenium concentrations below 3 mg·L-1 in liquid fermentation culture can promote the growth and selenium enrichment of Coprinus comatus hyphae,as well as the synthesis and release of proteins,while inhibiting the synthesis of polysaccharides.

References:

[1]石军,孙德文,陈安国.微量元素硒的生物学功能及其应用[J].兽药与饲料添加剂,2002,7(1):34-37.[2]喻大松.陕西紫阳和青海平安富硒环境中硒分布特征及其对人体健康的影响[D].杨凌:西北农林科技大学,2015.[3]张正伟.香菇硒富集规律与富硒香菇生产关键技术的初步研究[D].武汉:华中农业大学,2016.[4]刘书畅,马布平,周忠发,等.富硒食用菌的研究进展[J].食药用菌,2018,26(2):74-78.[5]谢玲,马湘豫,高楚倩,等.临沂基地不同食药用菌中6种金属元素的ICP-MS检测[J].食药用菌,2021,29(3):222-231.[6]李素春,何生根.一种极具开发价值的珍稀菇:鸡腿菇[J].广东农业科学,1999,26(2):26.[7]余杰,崔鹏举,崔仕超,等.鸡腿菇菌丝深层培养富硒的研究[J].食品与发酵工业,2008,34(7):93-97.[8]秦楠,刘羽,王力宇.响应曲面法优化鸡腿菇菌丝发酵液抗菌蛋白及其抗氧化活性[J].生物技术通报,2018,34(4):83-90.[9]吴丽军,孙小凤,张荣,等.青海不同品种春油菜对硒的吸收、积累及分配规律[J].西北农业学报,2013,22(8):47-51.[10]李志江.考马斯亮蓝G250染色法测定啤酒中蛋白质含量[J].酿酒,2008,35(1):70-72.[11]魏文平,任丽,王丹慧.牛奶蛋白质的测定方法优化[J].中国乳品工业,2010,38(8):41-42,45.[12]国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准 食品中蛋白质的测定:GB 5009.5-2016[S].北京:中国标准出版社,2017.[13]张慢,邢苏徽,千春录,等.7种食用菌的营养成分及抗氧化性分析[J].食品科技,2022,47(6):120-126.[14]铁梅.食用菌中硒的形态分析[D].上海:华东师范大学,2006.[15]张彩妮,邓百万,柏秋月,等.富硒条件下蜜环菌菌株硒耐受性及胞外酶生物活性的研究[J].微生物学报,2022,62(2):640-649.[16]兰天康,顾浩峰,王燕.食用菌中主要营养素与硒元素含量的相关性分析[J].陕西农业科学,2017,63(1):42-46.[17]李红侠,王晴,刘俊杰,等.硒对杏鲍菇菌丝生长和营养成分影响研究[J].洛阳师范学院学报,2019,38(5):24-26.[18]吴周斌.真姬菇菌草栽培及其富硒特性的研究[D].福州:福建农林大学,2015.[19]潘亚璐.富硒栽培对双孢蘑菇生长特性及硒形态分布的影响[D].南京:南京农业大学,2013.

Memo

Memo:
-
Last Update: 2024-05-10