|Table of Contents|

SNP Molecular Markers Development and Population Genetic Diversity Analysis of Liparis gigantea

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年21
Page:
101-108
Research Field:
Publishing date:

Info

Title:
SNP Molecular Markers Development and Population Genetic Diversity Analysis of Liparis gigantea
Author(s):
CUI XueqiangDENG JielingHUANG ChangyanZHANG Zibin
(Flower Research Institute,Guangxi Academy of Agricultural Sciences,Nanning,Guangxi 530007)
Keywords:
Liparis giganteaSLAF-seqSNP markerpopulationsgenetic diversity
PACS:
S 682.31
DOI:
10.11937/bfyy.20231659
Abstract:
A total of 44 samples from 4 geographical populations of Liparis gigantea in Leye county,Guangxi were used as test materials.Specific site amplified fragment sequencing (SLAF-seq) was used to develop SNP markers for Liparis gigantea.The genetic diversity and genetic relationships among different geographical populations of Liparis gigantea were studied by using the developed markers,in order to provide reference for the development,utilization and wild population protection of Liparis gigantea.The results showed that a total of 152 Mb of Clean Reads data were obtained from the test samples.The Reads data of each sample ranged from 2 098 129 to 5 169 592.The average GC content and sequencing quality value (Q30) of samples was 35.67% and 94.19%.Through sequencing data analysis,a total of 1 428 438 SLAF tags and 210 148 polymorphic SLAF tags were obtained.The average sequencing depth of the tags was 13.12×.A total of 574 866 population SNP markers were developed.The number of SNP markers in each sample ranged from 232 156 to 420 019.The integrity ratio was 40.38% to 73.06%,and the hetloci ratio was 2.51% to 5.47%.The population SNPs were filtered,and a total of 52 450 highly consistent and effective SNP markers were obtained.Using relevant software to calculate the genetic diversity index.The average minimum allele frequency (MAF) was 0.314 6.The average observed heterozygosity (Ho) was 0.160 1.The average Nei′s gene diversity index (H) was 0.436 8.The average polymorphism information content (PIC) was 0.312 6.The average Shannon diversity information index (I) was 0.580 8,indicating that the genetic diversity among populations of Liparis gigantea was relatively rich.The phylogenetic tree was constructed by using the SNP markers obtained.The 44 Liparis gigantea resources were divided into 4 groups.Analysis revealed that the genetic diversity and clustering results of the population were correlated with their growth altitude.

References:

[1]TSUTSUMI C,YUKAWA T,LEE N S,et al.Phylogeny and comparative seed morphology of epiphytic and terrestrial species of Liparis (Orchidaceae) in Japan[J].Journal of Plant Research,2007,120:405-412.[2]杨朔,李媛媛,周庆,等.羊耳蒜属植物研究进展[J].农业与技术,2021,41(8):822-825.[3]郑叶子,张智宽,马宏文,等.羊耳蒜属植物化学成分及药理作用的研究进展[J].中国医药导报,2016,13(15):44-47.[4]周敏,邹毅.羊耳蒜属植物化学成分及药理活性研究现状[J].新农业,2021(14):43-44.[5]LIANG W,GUO X,NAGLE D G,et al.Genus liparis:A review of its traditional uses in China,phytochemistry and pharmacology[J].Journal of Ethnopharmacology,2019,234:154-171.[6]陈心启,吉占和,郎楷永,等.中国植物志[M].北京:科学出版社,1999.[7]任海龙,许东林,张晶,等.菜薹KASP-SNP指纹图谱构建及品种鉴定[J].园艺学报,2023,50(2):307-318.[8]李娟,林建勇,欧汉彪,等.基于SLAF-seq技术的闽楠SNP标记开发及遗传多样性分析[J].分子植物育种,2021,19(13):4517-4524.[9]DONG Z M,CHEN L,LI Z,et al.Identification and molecular mapping of the semi-dwarf locus (sdf-1) in soybean by SLAF-seq method[J].Euphytica,2020,216(6):103.[10]WEI Q Z,WANG W H,HU T H,et al.Construction of a SNP-based genetic map using SLAF-seq and QTL analysis of morphological traits in eggplant[J].Frontiers in Genetics,2020(11):178.[11]ZHANG S Z,HU X H,MIAO H R,et al.QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.)[J].BMC Plant Biology,2019,19(1):537.[12]SUN X W,LIU D Y,ZHANG X F,et al.SLAF-seq:An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J].PLoS One,2013,8(3):e58700.[13]刘凯,李开祥,韦晓娟,等.基于SLAF-seq技术的金花茶SNP标记开发及遗传分析[J].经济林研究,2019,37(3):79-83.[14]李贝贝,张恒,姜建福,等.基于SLAF-seq技术的葡萄种质遗传多样性分析[J].园艺学报,2019,46(11):2109-2118.[15]俞超,陈煜,汪财生,等.基于SLAF-seq技术的红心火龙果SNP位点开发及遗传分析[J].热带作物学报,2017,38(4):591-596.[16]刘万达,杨光,焦奎宝,等.基于SLAF-seq技术的苹果SNP位点开发及遗传多样性分析[J].江苏农业科学,2023,51(8):61-66.[17]冯恩友,肖熙鸥,林文秋,等.利用SALF-seq简化基因组测序分析茄子种质资源遗传多样性[J].分子植物育种,2022,20(23):7940-7949.[18]李余良,索海翠,韩福光,等.基于SLAF-seq技术分析甜、糯玉米种质遗传多样性[J].玉米科学,2019,27(4):71-78.[19]MCKENNA A,HANNA M,BANKS E,et al.The genome analysis toolkit:A mapreduce framework for analyzing next-generation DNA sequencing data[J].Genome Research,2010,20(9):1297-1303.[20]LI H,HANDSAKER B,WYSOKER A,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009,25(16):2078-2079.[21]MA Y S,YU H,LI Y Y,et al.A Study of genetic structure of Stephania yunnanensis (Menispermaceae) by DALP[J].Biochemical Genetics,2008,46:227-240.[22]周琳,段玉,文博,马媛春,等.SNP分子标记及其在木本植物遗传育种的应用[J].亚热带植物科学,2018,47(2):187-193.[23]唐晓敏,张春荣,周良云,等.基于SLAF-seq技术的广金钱草SNP位点开发及遗传分析[J].分子植物育种,2020,18(18):6101-6107.[24]姜涛,温春秀,田伟,等.基于SLAF-seq技术连翘SNP分子标记开发及遗传多样性分析[J].分子植物育种,2021,19(16):5405-5413.[25]SOUZA I G B,SOUZA V A B,LIMA P S C.Molecular characterization of Platonia insignis Mart.(‘Bacurizeiro’) using inter simple sequence repeat (ISSR) markers[J].Molecular Biology Reports,2013,40(5):3835-3845.[26]谢一青,李志真,黄儒珠,等.武夷山不同海拔光皮桦种群遗传多样性及其与生态因子的相关性[J].林业科学,2008(3):50-55.[27]马翠苹,周先容,尚进,等.四川花萼山不同海拔巴山榧树居群的遗传多样性[J].分子植物育种,2018,16(19):6517-6524.[28]PAULS S U,NOWAK C,BALINT M,et al.The impact of global climate change on genetic diversity within populations and species[J].Mol Ecol,2013(22):925-946.[29]严学兵,郭玉霞,周禾,等.影响披碱草属植物遗传分化和亲缘关系的地理因素分析[J].植物资源与环境学报,2006(4):17-24.

Memo

Memo:
-
Last Update: 2023-12-06