|Table of Contents|

Response of Cucumber Plant Secondary MetabolismSubstance to Low-light Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年12
Page:
1-7
Research Field:
Publishing date:

Info

Title:
Response of Cucumber Plant Secondary MetabolismSubstance to Low-light Stress
Author(s):
ZHANG YanzhaoLUO LihengLI XilieZHANG FuguiWANG JunzhiLI Dandan
(College of Horticulture and Landscape Architecture,Heilongjiang Bayi Agriculture University,Daqing,Heilongjiang 163319)
Keywords:
cucumberlow-light stresssecondary substance metabolismseedlingsresponsing charactertics
PACS:
-
DOI:
10.11937/bfyy.20223959
Abstract:
The low-light tolerant homozygous cucumber line M67 and the low-light sensitive homozygous line M14 were used as test materials,the secondary biomass and the expression of PAL1 gene in leaves of seedlings at different stages were determined after low-light treatment with 80 μmol·m-2·s-1,the characteristics of cucumber plants responding to low light through changes in secondary substance metabolism at different stages were studied,in order to provide a reference for the mechanism studies of cucumber tolerance to low light and the breeding of varieties.The results showed that after low light treatment,except for the total phenol content in the leaf of seedlings of M67 at one-leaf and one-heart stage,the total phenol content in the leaves of both lines in other periods were significantly lower than that of the control,and M14 decreased more significantly at the cotyledon extension stage.The lignin content in the leaves of seedlings in M67 at various stages showed different degrees of increase compared with the control,there was the highest increase at one leaf stage.In terms of flavonoids,there was no significant decrease in the low-light tolerant line M67 compared with the control,and the low-light sensitive line M14 showed a significant decrease in three periods,and the flavonoid content in the leaves of the two-leaf and one-heart stage seedlings was the most significant,compared with the control.The PAL activity in the leaves of seedlings in both lines were significantly reduced,excepting for the significant decrease in PAL activity in the leaves of M67 at two-leaf and one-heart stage seedlings,and there was no change for the expression of CsPAL1 gene in the leaves of the M67 plant,while the expression of CsPAL1 gene in the leaves of the M14 line was significantly reduced.This study showed that the low-light tolerant line plants could improve their resistance to low-light stress by maintaining a more stable level of secondary metabolic substances.

References:

[1]林德佩.黄瓜植物的起源和分类研究进展[J].中国瓜菜,2017,30(7):1-3.[2]智研咨询.2021—2027年中国黄瓜行业市场供需规模及战略咨询研究报告[R].北京:智研咨询集团,2020.[3]王秀峰.蔬菜栽培学各论(北方本)[M].北京:中国农业出版社,2011.[4]李丹丹,邹士成,刘思源,等.低温弱光对黄瓜幼苗生长发育的影响[J].北方园艺,2015(18):41-43.[5]LI D D,QIN Z W,LIAN H,et al.Inheritance and quantitative trait loci analysis of low-light tolerance in cucumber (Cucumis sativusL.)[J].Genetics and Molecular Research,2015(9):10609-10618.[6]王怡.不同玉米品种 (系) 及单宁和没食子酸对玉米蚜解毒酶活性的影响[D].郑州:河南农业大学,2016.[7]李淑菊,马德华,庞金安,等.黄瓜感染黑星病菌后的生理变化及抗病性的产生[J].华北农学报,2003,18(3):74-77.[8]TANG C S,CAI K N,et al.Plant stress and allelopathy[J].ACS SYMP SER,1995,582:142-157.[9]魏永赞,李伟才,董晨,等.光照对植物花色素苷生物合成的调控及机制[J].植物生理学报,2017,53(9):1577-1585.[10] 杨海健,周心智,张云贵,等.光照对血橙果实内外着色调控的影响[J].南方农业学报,2019,50(9):2015-2021.[11] 杨海健,张云贵,周心智,等.不同 PE 材料遮光下血橙转色期果皮花色苷合成及其相关基因的表达分析[J].浙江农业学报,2021,33(10):1861-1869.[12] J F SANCHEZ,J LESCAR,V CHAZALET,et al.Biochemical and structural analysis of substrate specificity of a phenylalanine ammonialyase[J].Plant Physiology,2017,176(2):1608-2017.[13] 解莉楠,钱金鑫,张旸,等.拟南芥中WRKY家族基因功能的研究进展[J].安徽农业科学,2014,42(5):1295-1297,1301.[14] 韩丽平.弱光处理对黄瓜生长发育的影响研究[D].重庆:西南大学,2006.[15] 侯名语,崔顺立,穆国俊,等.花生种子黄酮及多酚含量的生态差异分析[J].华北农学报,2017,32(3):155-160.[16] 米国全,刘丽英,金宝燕,等.弱光对不同生态型黄瓜幼苗光合速率及蔗糖代谢相关酶活性的影响[J].华北农学报,2011,26(1):146-150.[17] LRYVA A,JARILLO J A,SALINAS J,et al.Low temperature induces the accumulation of phenylalanine ammonialyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner[J].Plant Physiol,1995,108(1):39-44.[18] SHANG Q M,LI L,DONG C J.et al.Multiple tandem duplication of the phenyalanine ammonia-lyase genes in Cucumis sativus L.[J].Planta,2012,236:1093-1105.[19] 武予清,郭予元,曾庆龄.转Bt基因棉单宁及总酚含量的初步测定[J].河南农业大学学报,2000(2):134-135,138.[20] 刘永锋,李美荣,陈志谊等.YD4-6和NV11-4菌株抑菌活性及诱导水稻防御性相关酶活性变化[J].微生物学通报,2010,37(12):1753-1759.[21] 纪楷滨.烟梗木质素的含量测定方法研究及结构表征[D].广州:华南理工大学,2013.[22] 董春娟,李亮,曹宁,等.苯丙氨酸解氨酶在诱导黄瓜幼苗抗寒性中的作用[J].应用生态学报,2015,26(7): 2041-2049.[23] 胡桂馨,贺春贵,王森山,等.不同苜蓿品种对牛角花齿蓟马的抗性机制初步研究[J].草业科学,2007,24(9):86-89.[24] 周兰.苹果果实发育中类黄酮含量变化及相关基因的研究[D]北京:中国农业科学院,2013.[25] 黄春辉,廖光联,谢敏,等.不同猕猴桃品种果实发育过程中总酚和类黄酮含量及抗氧化活性的动态变化[J].果树学报,2019(2):174-184.[26] XU Y,WANG G,CAO F,et al.Light intensity affects the growth and flavonol biosynth-esis of ginkgo (Ginkgo biloba L.)[J].New Forests,2014,45(6):765- 776.[27] 孙海燕,全雪丽,付爽,等.拟南芥苯丙氨酸解氨酶(PAL)基因的研究进展[J].延边大学学报,2018,38(1):88-92.[28] STEPHAN O,SUSAN A H,JOANNE C,et al.Functional properties of a phenylalani-ne mmonia-lyase promother from Arabidopis[J].The Plant Cell,1990,6(2):837-848.[29] 高红胜,张仁英,许学文,等.黄瓜苯丙氨酸解氨酶基因CsPAL的克隆及响应白粉菌侵染的表达分析[J].分子植物育种,2019,17(6):1757-1762.[30] 毕研飞,郭静,徐兵划,等.甜瓜蔓枯病抗性鉴定及PAL基因表达分析[J].西北植物学报,2015,35(2):239-244.

Memo

Memo:
-
Last Update: 2023-07-31