|Table of Contents|

Effects of Elevated CO2 Concentration and Drought Stress on Growth and Active Ingredients of Saxifraga stolonifera Curt.

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年02
Page:
96-103
Research Field:
Publishing date:

Info

Title:
Effects of Elevated CO2 Concentration and Drought Stress on Growth and Active Ingredients of Saxifraga stolonifera Curt.
Author(s):
LIU YueyanDENG XiaohongWANG RuijieGUAN PingWANG Jianjian
(College of Life Sciences,Guizhou University/Institute of Agro-bioengineering/Guiyang Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education),Guiyang,Guizhou 550025)
Keywords:
Saxifraga stolonifera Curt.CO2 concentrationdroughtbergeningallic acid
PACS:
-
DOI:
10.11937/bfyy.20222091
Abstract:
Saxifraga stolonifera Curt.was used as experimental material,potted plant control experiments methed was used,two CO2 concentrations of 400 μmol?mol-1 and 800 μmol?mol-1 were set,and two water gradients were set for each CO2 concentration treatment,included normal water content (90% field water content) and drought treatment (40% field water content).The effects of elevated CO2 concentration and drought on the growth and medicinal ingredients of Saxifraga stolonifera Curt were studied,in order to provide reference for the cultivation and cultivation of Saxifraga stolonifera Curt.under the background of global climate change.The results showed that the plant height,leaf number,roots,stems,leaves and total biomass of S.stolonifera decreased significantly after drought treatment.The biological yields of secondary metabolites bergenin and gallic acid decreased significantly,while MDA,SOD,and soluble sugar,bergenin and gallic acid content increased significantly.Elevated CO2 concentration significantly increases the plant height,leaf number,biomass,bergenin and gallic acid content and biological yield of S.stolonifera,and significantly reduces MDA content.Under drought treatment,increased CO2 concentration significantly increased plant height,leaf number,biomass,soluble sugar,bergenin,gallic acid contents and SOD activity of S.stolonifera,and significantly reduced the MDA content.In conclusion,drought had a significant inhibitory effect on the growth of S.stolonifera.Increasing CO2 concentration could promote the growth of S.stolonifera,alleviate the negative effects caused by drought,and increase the content of bergenin and gallic acid and biological yield.

References:

[1]王菡娟.2019年全球二氧化碳浓度继续升高[N].人民政协报,2021-07-22(6).[2]圣倩倩,高顺,顾舒文,等.CO2浓度升高对植物生理生化影响的研究进展[J].西部林业科学,2021,50(3):171-176.[3]JEFFERSON M.IPCC fifth assessment synthesis report:‘Climate change 2014:Longer report’:Critical analysis[J].Technol Forecast Soc,2015,92:362-363.[4]MEDVIGY D,WOFSY S C,MUNGER J W,et al.Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability[J].Proc Natl Acad Sci USA,2010,107(18):8275-8280.[5]SIEBERS M H,YENDREK C R,DRAG D,et al.Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress[J].Global Change Biol,2015,21(8):3114-3125.[6]LUO Y,REYNOLDS J,WANG Y P,et al.A search for predictive understanding of plant responses to elevated CO2[J].Global Change Biol,2010,5(2):143-156.[7]PENUELAS J,CASTELLS E,JOFFRE R,et al.Carbon-based secondary and structural compounds in Mediterranean shrubs growing near a natural CO2 spring[J].Global Change Biol,2010,8(3):281-288.[8]GIELEN B,CALFAPIETRA C,CLAUS A,et al.Crown architecture of Populus spp.is differentially modified by free-air CO2 enrichment (POPFACE)[J].New Phytol,2010,153(1):91-99.[9]许小勇,武佩琪,张新岭,等.外源增施CO2对茄子生长及光合特性的影响[J].北方园艺,2021(14):65-73.[10]ROGERS H H,RUNION G B,KRUPA S V.Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere[J].Environ Pollut,1994,83(1/2):155-189.[11]许俊萍,田昆,孙梅,等.水葱构件生长对大气CO2浓度升高的响应[J].西南林业大学学报,2016,36(5):84-88.[12]朱丽芳,张丹,庞璐.干旱胁迫对植物生理方面的影响[J].现代园艺,2017(21):71-72.[13]CHAVES M M,FLEXAS J,PINHEIRO C.Photosynthesis under drought and salt stress:Regulation mechanisms from whole plant to cell[J].Ann Bot,2008,103(4):551-560.[14]孙海博,任瑞芬,郭芳,等.干旱胁迫下美国薄荷幼苗形态与生理特性研究[J].山西农业大学学报(自然科学版),2018,38(4):65-73.[15]MARJAN S H,DAVOOD S,MORTEZA E,et al.Effect of drought stress on growth parameters,osmolyte contents,antioxidant enzymes and glycyrrhizin synthesis in licorice (Glycyrrhiza glabra L.) grown in the field[J].Phytochemistry,2018,156:124-134.[16]STEFANO C,GIOVANNI M,GIOVANNI E,et al.Physiological and metabolomic analysis of Punica granatum (L.) under drought stress[J].Planta,2016,2(243):441-449.[17]ZHU Z B,LIANG Z S,HAN R L,et al.Impact of fertilization on drought response in the medicinal herb Bupleurum chinense,DC.:Growth and saikosaponin production[J].Ind Crops Prod,2009,29(2):629-633.[18]MORGAN J A,LECAIN D R,PENDALL E,et al.C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland[J].Nature,2011,476(7359):202.[19]ATWELL B J,HENERY M L,ROGERS G S,et al.Canopy development and hydraulic function in Eucalyptus tereticornis grown in drought in CO2 enriched atmospheres[J].Funct Plant Biol,2007,34(12):1137-1149.[20]SMITH S D,HUXMAN T E,ZITZER S F,et al.Elevated CO2 increases productivity and invasive species success in an arid ecosystem[J].Nature,2000,408(6808):79-82.[21]XU Z,ZHOU G,WANG Y.Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia[J].Plant Soil,2007,301(1/2):87-97.[22]刘玉英,李卓琳,韩佳育,等.模拟降雨量变化与CO2浓度升高对羊草光合特性和生物量的影响[J].草业学报,2015,24(11):128-136.[23]何红梅,戴岳,夏玉凤.虎耳草的研究概况[J].中国野生植物资源,2017,36(2):75-78.[24]张慧,李秋月,贺尚文,等.虎耳草化学成分及药理活性研究进展[J].动物医学进展,2021,42(1):94-99.[25]秦红英,周光明,彭贵龙,等.HPLC同时测定虎耳草中的岩白菜素、原儿茶酸和没食子酸的含量[J].四川大学学报(自然科学版),2013,50(5):1044-1048.[26]贺安娜,左浪柱,李胜华,等.干旱对虎耳草光合特性及有效成分含量的影响[J].怀化学院学报,2016,35(5):6-9.[27]翟晓朦,张晓波,王铁梅,等.CO2浓度升高对不同秋眠类型苜蓿生长发育的影响[J].草业科学,2017,34(3):523-531.[28]刘洋,孙胜,邢国明,等.不同浓度CO2施肥对温室黄瓜生长与产量的影响[J].山西农业大学学报(自然科学版),2018(2):53-58.[29]王晨阳.土壤水分胁迫对小麦形态及生理影响的研究[J].河南农业大学学报,1992(1):89-98.[30]付秋实,李红岭,崔健,等.水分胁迫对辣椒光合作用及相关生理特性的影响[J].中国农业科学,2009,42(5):1859-1866.[31]种培芳,姬江丽,李毅,等.红砂(Reaumuria soongorica)对大气CO2浓度升高及降水变化的光合生理响应[J].中国沙漠,2017(4):714-723.[32]田露.水稻幼苗对高浓度CO2和水分胁迫的生理响应研究[D].沈阳:沈阳师范大学,2016.[33]朱教君,康宏樟,李智辉.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响[J].北京林业大学学报,2006,28(2):57-63.[34]裴斌,张光灿,张淑勇,等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报,2013,33(5):1386-1396.[35]何建社,张利,刘千里,等.岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应[J].生态学报,2018,38(7):2362-2371.[36]ANTONIO R,PEDRO D V,JOS A H,et al.Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil[J].J Plant Physiol,2008,165(7):720-722.[37]杜磊,赵尊练,巩振辉,等.水分胁迫对线辣椒叶片渗透调节作用的影响[J].干旱地区农业研究,2010,28(3):188-190.[38]LORIO P L.Growth-differentiation balance:A basis for understanding southern pine beetle-tree interactions[J].For Ecol Manag,1986,14(4):259-273.[39]孙萌,张子龙.药用植物对气候变化响应研究进展[J].生物学杂志,2015(5):84-88.[40]RASINENI G K,GUHA A,REDDY A R.Responses of Gmelina arborea,a tropical deciduous tree species,to elevated atmospheric CO2:Growth,biomass productivity and carbon sequestration efficacy[J].Plant Science,2011,181(4):428-438.

Memo

Memo:
-
Last Update: 2023-02-16