|Table of Contents|

Decomposition Rate of Litter and Dynamic Change of Nutrients in Different Stands in Coal Mining Subsidence Area

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年19
Page:
87-93
Research Field:
Publishing date:

Info

Title:
Decomposition Rate of Litter and Dynamic Change of Nutrients in Different Stands in Coal Mining Subsidence Area
Author(s):
WANG Hao1DANG Xiaohong12LIN Bo1JIAO Qian3ZHAO Zhe4LIU Erwen5
(1.College of Desert Management,Inner Mongolia Agricultural University,Hohhot,Inner Mongolia 010018;2.Hangjin National Positioning Observation and Research Station of Desert Ecosystem,Ordos,Inner Mongolia 017400;3.Shaanxi Academy of Environmental Sciences,Xi′an,Shaanxi 710000;4.Branch of Fugu,Yulin Ecological Environment Bureau of Shaanxi Province,Yulin,Shaanxi 719400;5.Wulanqab Agricultural and Forestry Research Institute,Wulanqab,Inner Mongolia 012000)
Keywords:
litterdecomposition rateecological metrologysand mining subsidence area
PACS:
-
DOI:
10.11937/bfyy.20220169
Abstract:
The litter samples of Salix psammophila,Populus simonii Carr and Salix psammophila-Populus simonii Carr mixed forest in the subsidence area of Lijiata coal mine in Shenfu Coalfield were collected and used as the materials in a field litter decomposition experiment with decomposition bags,the effects of litter sources and soil type on decomposition rate and dynamic characteristics of nutrient release of litter were investigated,in order to provide reference for regional ecological restoration.The results showed that the k value of Salix psammophila litter reached the peak of 0.180 at 240 days,and the k value of mixed litter increased to 0.125 at 180 days;k value of litter in Populus simonii Carr forest reached a peak of 0.124 at 240 days.At the same time,the total nitrogen content of litter was Salix psammophila forest>mixed litter>Populus simonii Carr forest.Organic carbon content from high to low was Salix psammophila forest>mixed litter>Populus simonii Carr forest.The total phosphorus content of Salix psammophila litter reached its peak at 60 days (0.979 g·kg-1),and its C/N was 57.86-75.18.That was,60 days>CK>120 days>180 days,reaching the maximum value (78.88) in 60 days and the minimum value (57.86) in 180 days.The C/N ratio of mixed litter was 72.89-92.01,which reached the peak at 120 days.The litter of Populus simonii reached the lowest value of 77.22 in 180 days.The litter of Salix psammophila forest in coal mining subsidence area had higher decomposition rate and ability to return to soil nutrients,which provided reference for regional ecological restoration.

References:

[1]张萍,章广琦,赵一娉,等.黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J].生态学报,2018,38(14):5087-5098.[2]SAYER E J.Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems[J].Biological Reviews,2010,81(1):1-31.[3]樊登星,余新晓,岳永杰,等.北京西山不同林分枯落物层持水特性研究[J].北京林业大学学报,2008(S2):177-181.[4]阎欣,安慧.土壤非保护性有机碳对荒漠草原沙漠化的响应[J].生态学报,2018,38(8):2847-2854.[5]李明军,喻理飞,杜明凤,等.不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及作关系[J].生态学报,2018,38(21):7772-7811.[6]常雅军,曹靖,马建伟,等.秦岭西部山地针叶林凋落物持水特性[J].应用生态学报,2008,19(11):2346-2351.[7]ZHOU G Y,GUAN L L,WEI X H,et al.Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong,China[J].Plant Ecology,2007,188(1):77-89.[8]高志红,张万里,张庆费.森林凋落物生态功能研究概况及展望[J].东北林业大学学报,2004,32(6):79-81.[9]任海,彭少麟,刘鸿先,等.小良热带人工混交林的凋落物及其生态效益研究[J].应用生态学报,1998,9(5):458-462.[10]施妍,陈芳清.大老岭自然保护区日本落叶松林凋落物分解及养分释放研究[J].林业科学研究,2016,29(3):430-435.[11]勒佳佳,苏原,罗艳,等.围封对天山高寒草原4种植物叶片和土壤化学计量学特征的影响[J].生态学报,2020,40(5):1621-1628.[12]蒙仲举,万芳.封育措施下荒漠草原不同枯落物分解特征[J].水土保持学报,2021,35(1):319-325.[13]李强,周道玮,陈笑莹.地上枯落物的累积、分解及其在陆地生态系统中的作用[J].生态学报,2014,34(14):3807-3819.[14]钱者东.干旱半干旱地区煤矿开采生态影响研究[D].南京:南京师范大学,2011.[15]栗丽,王曰鑫,王卫斌.采煤塌陷对黄图丘陵区坡耕地土壤理化性质的影响[J].土壤通报,2010,41(5):1237-1240.[16]徐友宁,吴贤,陈华清.大柳塔煤矿地面塌陷区的生态地质环境效应分析[J].中国矿业,2008,17(3):38-50.[17]OLSON J S.Energy storage and the balance of producers and decomposers in ecological systems[J].Ecology,1963,44(2):322-331.[18]万芳,蒙仲举,党晓宏,等.封育措施下荒漠草原针茅植物-土壤C、N、P化学计量特征[J].草业学报,2020,29(9):49-55.[19]HE J S,FANG J Y,WANG Z H,et al.Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J].Oecologia,2006,149(1):115-122.[20]ELSER J,FAGAN W,DENNO R,et al.Nutritional constraints in terrestrial and freshwater food webs[J].Nature,2000,408:578-580.[21]万芳,蒙仲举,党晓宏.荒漠草原建群种及其枯落物的C、N、P生态化学计量特征[J].东北林业大学学报,2020,48(2):29-33.[22]杨霞,陈丽华,郑学良.不同林龄油松人工林土壤碳、氮和磷生态化学计量特征[J].中国水土保持科学(中英文),2021,19(2):108-116.[23]ELSER J J,STERNER R W,GOROKHOVA E,et al.Biological from genes to ecosystems[J].Ecology Letters,2000,3(6):540-550.[24]尹传华.不同生境下盐生灌木盐岛效应的变化及生态学意义[J].土壤学报,2012,49(2):289-295.

Memo

Memo:
-
Last Update: 2022-12-07