|Table of Contents|

Cloning and Expression Analysis of CpCHS1 Gene of Cerasus pseudoceresus ‘Manaohong’

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年13
Page:
16-24
Research Field:
Publishing date:

Info

Title:
Cloning and Expression Analysis of CpCHS1 Gene of Cerasus pseudoceresus ‘Manaohong’
Author(s):
LI ShuangRAN JiaxinLI XiaorongHOU QiandongQIAO Guang
(Institute of Agricultural Bioengineering,Guizhou University/Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation,Ministry of Education,Guiyang,Guizhou 550025)
Keywords:
‘Manaohong’ cherrychalcone synthasegene cloningexpression analysis
PACS:
-
DOI:
10.11937/bfyy.20220028
Abstract:
Taking the root tissue of ‘Manaohong’ cherry as experimental materials,using PCR (RT-PCR) technology,the CpCHS1 gene was cloned,and its sequence was analyzed by bioinformatics and expression analysis.The expression of this gene in different tissues of the plant and its expression in response to stress were investigated,in order to provide reference for further analysis of the function of this gene in stress.The results showed that,the full length of ‘Manaohong’ cherry 〖STBX〗CpCHS1 〖STBZ〗was 1 227 bp,which encoded 408 amino acids.The relative molecular mass was 44.6 kD,the theoretical isoelectric point (pI) was 6.53;there was no transmembrane domain,and it was a stable hydrophilic protein;the protein signal peptide was predicted to be a non-secreted protein;the secondary structure included α-helix and no regular curling,etc.;multiple sequence alignments showed that CpCHS1 was closely related to Prunus persica,with a similarity of 100%.The results of fluorescence quantitative PCR showed that the expression of CpCHS1 in roots was the highest,followed by fruits and leaves.CpCHS1 expression changed significantly under drought,high salt,low temperature and high temperature.In conclusion ‘Manaohong’ cherry CpCHS1 had the highest expression level in the root system,and it responded significantly to adversity stress,which might be closely related to plant resistance.

References:

[1]刘素军,蒙美莲,陈有君.干旱胁迫及复水对马铃薯类黄酮合成途径中关键酶及基因表达的影响[J].植物生理学报,2018,54(1):81-91.[2]王继玥,刘燕,杜斌.盐胁迫下黄秋葵查尔酮合成酶基因AeCHS的表达模式分析[J].分子植物育种,2017,15(6):2073-2076.[3]李爽,孙亮亮,白丽丽,等.类黄酮参与调控中亚滨藜幼苗对盐胁迫的耐受性[J].中国生态农业学报,2017,25(9):1345-1350.[4]魏红,丰帆,陈旭丹.4种中药黄酮提取物清除自由基活性的研究[J].天津师范大学学报(自然科学版),2008,28(2):14-17.[5]郭欣慰,黄丛林,吴忠义,等.植物类黄酮生物合成的分子调控[J].北方园艺,2011(4):204-207.[6]李苗,李国旗.査尔酮合成酶基因及其分子进化研究进展[J].中国农学通报,2015,31(18):5.[7]廖靖军,安成才,吴思,等.查尔酮合酶基因在植物防御反应中的调控作用[J].北京大学学报(自然科学版),2000,15(4):566-575.[8]REIMOLD U,KRGER M,KREUZALER F.Coding and 3′non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme[J].The EMBO Journal,1983,2(10):1801-1805.[9]HAN Y,DING T,SU B,et al.Genome-wide identification,characterization and expression analysis of the chalcone synthase family in maize[J].International Journal of Molecular Sciences,2016,17(2):161.[10]CHEN S,PAN X,LI Y,et al.Identification and characterization of chalcone synthase gene family members in Nicotiana tabacum[J].Journal of Plant Growth Regulation,2017,36(2):374-384.[11]许明,林世强,倪冬昕.藤茶查尔酮合成酶基因AgCHS1的克隆及功能鉴定[J].中国农业科学,2020,53(24):5091-5103.[12]聂利珍,李晓东,谢锐.彩色马铃薯查尔酮合酶基因的克隆及生物信息学分析[J].分子植物育种,(2021-03-16)[2021-10-30].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=FZZW20210312007& uniplatform=NZKPT&v=_MB1PS_Ch2CYZadlhCfbH-GCTzr0B4SXBtTdx1faDwtm-8VoaOp 2nrjCnWwzeE9R.[13]胡会刚,胡玉林,庞振才,等.香蕉查尔酮合酶基因家族生物信息学分析[J].分子植物育种,2018,16(21):6931-6937.[14]马立功,张匀华,孟庆林.向日葵查尔酮合酶HaCHS基因的克隆与逆境应答[J].中国油料作物学报,2016,38(1):19-26.[15]RICHARD S,LAPOINTE G,RUTLEDGE R G.Induction of chalcone synthase expression in white spruce by wounding and jasmonate[J].Plant Cell Physiology,2000,41(8):982-987.[16]伍翀,黄璐琦,袁媛,等.黄芩查尔酮合酶基因内含子在转基因烟草中对GUS活性调控的初步研究[J].中国中药杂志,2011,36(3):361-365.[17]陈祖瑶,郑元红,徐富军.樱桃早熟新品种玛瑙红的选育[J].中国果树,2013(1):8-10.[18]姜昱雯.生物炭处理下玛瑙红樱桃根系基因的差异表达[D].贵阳:贵州大学,2020.[19]SCHMITTGEN T D,LIVAK K J.Analyzing real-time PCR data by the comparative CT method[J].Nature Protocols,2008,3(6):1101-1108.[20]吴雪霞,张爱冬,朱宗文,等.高温胁迫对茄子果皮活性氧代谢、花青素及其主要合成酶的影响[J].江西农业学报,2018,30(6):1-5.[21]WINKEL-SHIRLEY B.It takes a garden.How work on diverse plant species has contributed to an understanding of flavonoid metabolism[J].Plant Physiology,2001,127(4):1399-1404.[22]CHENNUPATI P,PRATYUSHA C,PHILIPPE S.Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesi[J].Journal of Agricultural and Food Chemistry,2012,60(51):12421-12427.[23]蒋明,曹家树.查尔酮合成酶基因[J].细胞生物学杂志,2007,29(4):5.[24]李苗,李国旗.査尔酮合成酶基因及其分子进化研究进展[J].中国农学通报,2015,31(18):5.[25]晏校.逆境胁迫对枳实生苗类黄酮组分含量及关键酶基因表达量的影响[D].武汉:华中农业大学,2011.[26]刘素军,蒙美莲,陈有君.干旱胁迫及复水对马铃薯类黄酮合成途径中关键酶及基因表达的影响[J].植物生理学报,2018,54(1):81-91.[27]贾腾蛟.大豆异黄酮合成关键酶基因GmIFS1和GmCHS7参与植物盐胁迫响应的研究[D].南京:南京农业大学,2017.[28]王海波,邹竹荣,龚明.小桐子低温诱导查耳酮合酶基因的克隆及其表达分析[J].热带亚热带植物学报,2015,23(4):370-378.[29]李艳.香鳞毛蕨查尔酮合成酶基因家族的克隆与特异性表达[D].哈尔滨:东北农业大学,2014.[30]李文静,孙艳香,付亚娟,等.菊芋查尔酮合成酶基因的克隆与表达分析[J].西北农业学报,2020,29(4):603-612.[31]何锐杰,方庭,余伟军,等.西番莲查尔酮合成酶(CHS)基因家族全基因组鉴定及表达模式[J].应用与环境生物学报,2022(27):1-17.[32]王毅,肖良俊,马婷,等.低温诱导泡核桃中查尔酮合成酶基因克隆及功能分析[J].分子植物育种,2018,16(2):386-391.[33]CORREIA B,RODRIGUEZ J L,VALLEDOR L,et al.Analysis of the expression of putative heat-stress related genes in relation to thermotolerance of cork oak[J].Plant Physiol,2014,171(6):399-406.[34]吴雪霞,张爱冬,朱宗文,等.高温胁迫对茄子果皮活性氧代谢、花青素及其主要合成酶的影响[J].江西农业学报,2018,30(6):1-5.[35]张圣美,刘晓慧,尚静,等.高温胁迫对茄子花青素含量及其合成相关酶活性和基因表达的影响[J].上海农业学报,2020,36(6):6-12.

Memo

Memo:
-
Last Update: 2022-08-29