|Table of Contents|

Effects of Physiological Regulation of γ-aminobutyric Acid on the Salt Tolerance in Xanthoceras sorbifolia Bunge

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年19
Page:
53-60
Research Field:
Publishing date:

Info

Title:
Effects of Physiological Regulation of γ-aminobutyric Acid on the Salt Tolerance in Xanthoceras sorbifolia Bunge
Author(s):
CAI YuboLIANG YunjiangZHANG BoyingLUO Guangjun
(College of Agriculture,Yanbian University,Yanji,Jilin 133000)
Keywords:
γ-aminobutyric acidNaCl stressXanthoceras sorbifolia Bungephysiological indexprotective enzyme
PACS:
-
DOI:
10.11937/bfyy.20214619
Abstract:
The leaf cuttings of Xanthoceras sorbifolia Bunge were used as the test materials,the four stress treatments,1% NaCl,5 mmol·L-1 GABA+1% NaCl,10 mmol·L-1 GABA+1% NaCl,and 15 mmol·L-1 GABA+1% NaCl were set.Morphological indexes,root activity,endogenous GABA content,protective enzyme activity,malondialdehyde (MDA),superoxide anion (O·〖TX--*9〗2) and Na+ contents were determined.The effects of γ-aminobutyric acid (GABA) on the physiological characteristics of Xanthoceras sorbifolia Bunge under salt stress were studied,in order to provide reference for the study on the salt tolerance of Xanthoceras sorbifolia Bunge.The results showed that under salt stress,the plant growth rate,plant fresh weight,leaf area,root dry weight,stem dry weight and leaf dry weight were significantly lower than the control,while the main root length was significantly higher than the control.10 mmol·L-1 GABA significantly alleviated the growth and development of Xanthoceras sorbifolia Bunge under salt stress.In particular,the external morphology of Xanthoceras sorbifolia Bunge under 15 mmol·L-1 GABA treatment was basically restored to the control level.Exogenous GABA significantly inhibited Na+ accumulation and increased the activities of superoxide dismutase (SOD),peroxidase (POD) and catalase (CAT) in the roots of Xanthoceras sorbifolia Bunge under salt stress,thus decreasing the accumulation of MDA.In conclusion,exogenous GABA significantly inhibited Na+ accumulation in roots of Xanthoceras sorbifolia Bunge under salt stress,improved protective enzyme activity and root activity,reduced plasma membrane oxidative damage of roots,and alleviated salt stress.

References:

[1]BOUCHE N,LACOMBE B,FROMM H.GABA signaling:A conserved and ubiquitous mechanism[J].Trends in Cell Biology,2003(13):607-610.[2]PODLESAKOVA K,UGENA L,SPCHAL L,et al.Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J].New Biotechnology,2019,48:53-65.[3]ZAREI A,TROBACHER C P,COOKE A R,et al.Apple fruit copper amine oxidase isoforms:Peroxisomal MdAO1 prefers diamines as substrates,whereas extracellular MdAO2 exclusively utilizes monoamines[J].Plant Cell Physiology,2015,56:137-147.[4]OH S J,KIM H S,LIM S T.Increase of gamma-aminobutyric acid contents in rice embryo with protein hydrolysates and pyridoxal-5-phosphate using abiotic stress[J].Journal of Cereal Science,2019,89:102803.[5]CHE-OTHMAN M H,JACOBY R P,MILLAR A H,et al.Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress[J].New Phytologist,2020,225:1047-1048.[6]MEKONNEN D W,FLGGE U I,LUDEWIG F.Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana[J].Plant Science,2016,245:25-34.[7]NAYYAR H,KAUR R,KAUR S,et al.γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants[J].Journal of Plant Growth Regulation,2014(33):408-419.[8]VIJAYAKUMARI K,PUTHUR J T.γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn.plants subjected to PEG-induced stress[J].Plant Growth Regulation,2016,78:57-67.[9]WANG Y C,GU W R,MENG Y,et al.γ-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants[J].Scientific Reports,2017(7):43609.[10]SHETEIWY M S,SHAO H,QI W,et al.GABA-alleviated oxidative injury induced by salinity,osmotic stress and their combination by regulating cellular and molecular signals in rice[J].International Journal of Molecular Sciences,2019(20):5709.[11]牟洪香,侯新村.文冠果的研究进展[J].安徽农业科学,2007,35(3):703-705.[12]刘明君.文冠果育苗及栽培管理技术[J].现代园艺,2012(12):27-28.[13]邢军武.盐碱环境与盐碱农业[J].地球科学进展,2001(14):257-266.[14]张晓燕.神东矿区不同种源地文冠果生长适宜性及耐盐性研究[D].呼和浩特:内蒙古农业大学,2012.[15]李福鑫,李旭,金香花,等.NaCl胁迫对文冠果扦插幼苗光合特性的影响[J].延边大学农学学报,2015,40(6):143-144.[16]李永德,李旭,金香花,等.NaCl胁迫对文冠果幼苗生长和生理生化特征的影响[J].延边大学农学学报,2015,37(3):213-216.[17]张自阳,候轩轩,陈培,等.MST种子活力剂对小麦种子活力及幼苗生长的影响[J].河南科技学院学报(自然科学版),2014(2):1-5.[18]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003.[19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.[20]LYU Y G,ZHANG H,MENG X Y,et al.A validated HPLC method for the determination of GABA by pre-column derivatization with 2,4-dinitrofluorodinitrobenzene and its application to plant GAD activity study[J].Analytical Letters,2010,43:2663-2671.[21]付长方,张海艳.盐胁迫对玉米种子萌发、幼苗叶绿素含量和渗透势的影响[J].山东农业科学,2015,47(5):27-30.[22]张翯,顾万荣,王泳超,等.DCPTA对盐胁迫下玉米苗期根系生长、渗透调节及膜透性的影响[J].生态学杂志,2015,34(9):2474-2481.[23]王泳超,郑博元,顾万荣,等.γ-氨基丁酸对盐胁迫下玉米幼苗根系氧化损伤及内源激素的调控[J].农药学学报,2018,20(5):607-617.[24]罗黄颖,高洪波,夏庆平,等.γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响[J].中国农业科学,2011,44(4):753-761.[25]DEEWATTHANAWONG R,NOCK J F,WATKINS C B.γ-Aminobutyric acid (GABA) accumulation in four strawberry cultivars in response to elevated CO2 storage[J].Postharvest Biology Technology,2010,57:92-96.[26]SHANG H,CAO S,YANG Z,et al.Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage[J].Journal of Agricultural and Food Chemistry,2011,59:1264-1268.[27]刘明杰.拟南芥Na+、K+吸收与积累的研究[D].兰州:兰州大学,2014.[28]白丽萍,何雨,宋宇,等.茄子砧木Na+、K+含量、SK、Na运输与耐盐性关系研究[J].植物生理学报,2014,50(11):1645-1650.[29]FLOWERS T J,COLMER T D.Plant salt tolerance:Adaptations in halophytes[J].Annals of Botany,2015,115:327-331.[30]贾邱颖,吴晓蕾,冀胜鑫,等.γ-氨基丁酸对番茄嫁接苗耐盐性的生理调控效应[J].植物营养与肥料学报,2021(7):122-134.

Memo

Memo:
-
Last Update: 2022-12-06