|Table of Contents|

Effects of Different Fertilization Schemes on Soil Ammonia Volatilization and Tomato Growth in the Facility Vegetable Field

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年20
Page:
59-66
Research Field:
Publishing date:

Info

Title:
Effects of Different Fertilization Schemes on Soil Ammonia Volatilization and Tomato Growth in the Facility Vegetable Field
Author(s):
WANG Zhanfu1HUANG Lulu1WANG Cong2XU Chunhua1ZHU En1JIN Haiyang1
(1.Extension Service Center of Agricultural Technology of Shanghai,Shanghai 201103;2.Shanghai Academy of Agricultural Sciences,Shanghai 201106)
Keywords:
facility vegetable fieldammonia volatilizationtomatoyield
PACS:
-
DOI:
10.11937/bfyy.20210181
Abstract:
Tomato was selected as the research object.The closed gas collection method was used to monitor the ammonia volatilization of each fertilization scheme in the field.The ammonia volatilization rate,accumulation of facility vegetable soil and tomato yield under different fertilization schemes were studied,in order to effectively reduce soil ammonia volatilization,improve tomato yield and rational fertilization.The results showed that the cumulative amount of ammonia volatilization during tomato growth period under different fertilization treatments was as follows,CK>T3>T6>T1>T2>T5>T4.Among them,the lowest cumulative amount of ammonia volatilization of T4 was 4.29 kg?hm-2,which was 27.78% lower than that of CK.The cumulative amount of ammonia volatilization of T5,T2,T1,T6 and T3 were 25.93%,23.10%,22.63%,19.04%,12.08% lower than CK,respectively.The cumulative amount of ammonia volatilization within 7 days of basal fertilizer and second top-dressing application accounted for 54.47%-66.18% of the total ammonia volatilization during the whole growth period.The amount of fertilizer and temperature may be the main reasons affecting ammonia volatilization.The yield of tomato was T6>T2>T5>T3>CK>T1>T4.The yield of T6 was as high as 88 204.04 kg?hm-2,which was 38.84% higher than that of CK,and the cumulative amount of ammonia volatilization was small.Comprehensive tomato production and environmental benefits,the recommended fertilization program for facility tomato in this area was T2,T3,T5,T6.Through reducing the application of chemical fertilizer and the rational application of organic fertilizer or microbial fertilizers or water-soluble fertilizers in tomato production in greenhouse,the soil ammonia volatilization could be significantly reduced,and the yield could be increased,the cost of fertilization would be saved.

References:

[1]何文寿.设施农业中存在的土壤障碍及其对策研究进展[J].土壤,2004(3):235-242.[2]YU J Q,MATSUI Y.Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.)[J].J Chem Ecol,1994,20(1):21-31.[3]彭澎,梁龙,李海龙,等.我国设施农业现状、问题与发展建议[J].北方园艺,2019(5):161-168.[4]何芬,马承伟.中国设施农业发展现状与对策分析[J].中国农学通报,2007(3):462-465.[5]孙志梅,武志杰,陈利军,等.农业生产中的氮肥施用现状及其环境效应研究进展[J].土壤通报,2006(4):782-786.[6]BOUWMAN A F,BOUMANS L J M,BATJES N H.Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands[J].Global Biogeochemical Cycles,2002,16(2):1024-1039.[7]MOSIER A R.Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere[J].Plant and Soil,2001,228(1):17-27.[8]GONG W W,ZHANG Y S,HUANG X F,et al.High-resolution measurement of ammonia emissions from fertilization of vegetable and rice crops in the Pearl River Delta Region,China[J].Atmospheric Environment,2013,65:1-10.[9]龚巍巍,张宜升,何凌燕,等.菜地氨挥发损失及影响因素原位研究[J].环境科学,2011,32(2):345-350.[10]苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003(11):1884-1888.[11]FERM M.Atmospheric ammonia and ammonium transport in Europe and critical loads:A review[J].Nutrient Cycling in Agroecosystems,1998,51(1):5-17.[12]董文煊,邢佳,王书肖.1994—2006年中国人为源大气氨排放时空分布[J].环境科学,2010,31(7):1457-1463.[13]陈德明,孙海,孙延东.搞好上海城郊设施菜田建设提升地产蔬菜供应保障能力[J].长江蔬菜,2010(5):1-4.[14]王朝辉,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定:通气法[J].植物营养与肥料学报,2002(2):205-209.[15]查同刚.土壤理化分析[M].北京:中国林业出版社,2017.[16]贾明飞,乜兰春,崔强,等.不同施肥方案对日光温室土壤氨挥发及番茄产量和品质的影响[J].北方园艺,2020(20):44-53.[17]吴腾超,蓝增全,胡正义,等.不同氮肥用量对滇池柴河流域蔬菜地土壤氨挥发及作物产量的影响[J].现代农业科技,2015(3):205-208.[18]倪康,丁维新,蔡祖聪.有机无机肥长期定位试验土壤小麦季氨挥发损失及其影响因素研究[J].农业环境科学学报,2009,28(12):2614-2622.[19]习斌,张继宗,左强,等.保护地菜田土壤氨挥发损失及影响因素研究[J].植物营养与肥料学报,2010,16(2):327-333.[20]郝小雨,高伟,王玉军,等.有机无机肥料配合施用对日光温室土壤氨挥发的影响[J].中国农业科学,2012,45(21):4403-4414.[21]张佼,屈锋,朱玉尧,等.增施有机肥和微生物菌剂对春季杨凌设施番茄产量和品质的影响[J].西北农业学报,2019,28(5):767-773.[22]马晓燕,王军玲,郭秀锐,等.不同施氮情景下北京地区露地甘蓝土壤氨的排放[J].北方园艺,2017(13):140-147.[23]贺发云,尹斌,金雪霞,等.南京两种菜地土壤氨挥发的研究[J].土壤学报,2005(2):253-259.[24]张国显,范永怀,赵凤艳,等.化肥减量配施有机物料对设施番茄生长、光合特性、产量及品质的影响[J].中国科技论文,2018,13(6):698-703.[25]郝小雨,高伟,王玉军,等.有机无机肥料配合施用对设施番茄产量、品质及土壤硝态氮淋失的影响[J].农业环境科学学报,2012,31(3):538-547.

Memo

Memo:
-
Last Update: 2022-02-07