|Table of Contents|

Growth and Physiological Response of Cercis canadensis ‘Forest Pansy’ Under Different Drought Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年20
Page:
62-69
Research Field:
Publishing date:

Info

Title:
Growth and Physiological Response of Cercis canadensis ‘Forest Pansy’ Under Different Drought Stress
Author(s):
WANG Chaoying12FANG Wen23CHEN Lihua1MA Lihui23LIU Yang23XIE Yingzan23
(1.Chongqing City Management College,Chongqing 401331;2.Chongqing Mountain Type Urban Forest Ecosystem National Positioning Observatory and Research Station,Chongqing 400036;3.Chongqing Academy of Forestry Sciences,Chongqing 400036)
Keywords:
Cercis canadensis ‘Forest Pansy’droughtgrowthphysiology
PACS:
-
DOI:
10.11937/bfyy.20194236
Abstract:
One-year-old seedlings of Cercis canadensis ‘Forest Pansy’ were used as materials,and four different kinds of water stress (the control group,CK,80% of field water holding capacity;mild drought group,T1,60% of field water holding capacity;moderate drought group,T2,45% of field water holding capacity;severe drought group,T3,30% of field water holding capacity) and subsequent restoration treatments conducted by artificial water control were applied to examine the growth and physiological response of the seedlings.The aim of the study was to understand the sensitivity of C.canadensis to water stress and provide management for its introduction and planting.The results showed that the soluble sugar,superoxide anion and MDA contents of the seedlings were increased under drought stress.While the starch contents of the seedlings were decreased under drought stress.Unlike the previous change,the activity of SOD,POD and CAT were increased and then decreased.Furthermore,these changes were intense with the drought stress increase and the prolongation of treatment time.The survival rate,plant height,base diameter,crown area and number of branches decreased with the drought stress increase and the prolongation of treatment time.After 1 month of recovery,the physiological indexes of the drought-stress groups were close to the level of the control group.These results indicated that C.canadensis seedlings had a certain drought tolerance.Short period of mild drought stress had little effect on its normal growth,but water should be added in time when moderate or above drought occurs.

References:

[1]沙文勇.欧洲彩叶园林树种介绍(二)[J].中国花卉园艺,2003(1):14-15.[2]谷景敏,毛玉收,赵景荣.紫叶加拿大紫荆生产技术及园林应用[J].农业科技与信息,2011(8):29.[3]张艳.红叶加拿大紫荆[J].花木盆景(花卉园艺),2014(9):4.[4]祝建刚.彩叶植物新品种引种栽培试验研究[J].中国林业,2011(23):48.[5]杨科,肖前刚,廖兴勇,等.5种彩叶树种在崇州羊马引种生长适应性研究[J].西部林业科学,2013,42(3):111-116.[6]王福银,史云光,蔡鸿宇.紫叶加拿大紫荆嫁接育苗技术[J].江苏林业科技,2008,35(1):46-47.[7]孟月娥,李艳敏,赵秀山,等.紫叶加拿大紫荆组织培养研究[J].河南农业科学,2010,39(12):114-117.[8]李艳敏,王利民,王慧娟,等.紫叶加拿大紫荆试管苗两步生根培养技术研究[J].河南农业科学,2017,46(9):114-117.[9]杨羚.环境因子对紫叶加拿大紫荆生长及叶色变化的影响[D].哈尔滨:东北林业大学,2007.[10]许鑫科,苑兆和,冯立娟,等.紫叶加拿大紫荆叶色表达期相关物质的研究[J].中国农学通报,2010,26(1):154-157.[11]许鑫科.两种彩叶植物叶色表达相关机理研究[D].泰安:山东农业大学,2010.[12]马琴国,王引权,赵勇.蒽酮-硫酸比色法测定党参中可溶性糖含量的研究[J].甘肃中医药大学学报,2009,26(6):46-48.[13]徐昌杰,陈文峻,陈昆松,等.淀粉含量测定的一种简便方法:碘显色法[J].生物技术,1998(2):41-43.[14]李光忠,龚明.植物中超氧阴离子自由基测定方法的改进[J].云南植物研究,2005,27(2):211-216.[15]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2007.[16]郑炳松.现代植物生理生化研究技术[M].北京:气象出版社,2006.[17]张志良.植物生理学实验指导[M].3版.北京:高等教育出版社,1992.[18]张藉粱,杨福孙,张伦德.干旱胁迫对菠萝叶片水分和可溶性糖含量的影响[J].中国热带农业,2017(5):28-32.[19]徐扬,赵健,张雷,等.干旱胁迫对板栗二年生嫁接苗叶片相对含水量和可溶性糖含量的影响[J].农学学报,2017,7(1):91-94.[20]肖姣娣.不同强度干旱胁迫对刺槐幼苗生理生化特性的影响[J].中南林业科技大学学报,2015(8):29-32.[21]石文宏,宛涛,蔡萍,等.乌丹蒿幼苗对干旱胁迫的生理响应[J].中国草地学报,2018,40(1):115-120.[22]张卫红,刘大林,苗彦军,等.西藏3种野生牧草苗期对干旱胁迫的响应[J].生态学报,2017(21):264-272.[23]谢美华,罗中泽,吕琴,等.干旱胁迫对不同玉米品种幼苗可溶性糖和过氧化酶活性的影响[J].楚雄师范学院学报,2015(3):43-48.[24]刘灵娣,李存东,孙红春,等.干旱对棉花叶片碳水化合物代谢的影响[J].棉花学报,2007,19(2):129-133.[25]潘昕,邱权,李吉跃,等.干旱胁迫对青藏高原6种植物生理指标的影响[J].生态学报,2014,34(13):3558-3567.[26]任迎虹,刘松青,祁伟亮,等.干旱胁迫下桑树叶片中超氧阴离子的变化规律[J].广西植物,2017(9):1122-1129.[27]孙侨南,李进才,王月梅,等.干旱胁迫对黄瓜幼苗光合及活性氧代谢的影响[J].天津农业科学,2010,16(4):5-7.[28]马文涛,樊卫国.贵州野生柑橘的抗旱性及其活性氧代谢对干旱胁迫的响应[J].果树学报,2014(3):394-400.[29]胡义,胡庭兴,陈洪,等.干旱胁迫及复水对香樟幼树生理特性及生长的影响[J].西北植物学报,2015,35(2):294-301.[30]周欢欢.干旱胁迫及复水对波叶金桂生理生化的影响[D].杭州:浙江农林大学,2019.[31]张清航,张永涛.植物体内丙二醛(MDA)含量对干旱的响应[J].林业勘查设计,2019(1):110-112.[32]张海娜,鲁向晖,金志农,等.高温条件下稀土尾砂干旱对4种植物生理特性的影响[J].生态学报,2019,39(7):164-172.[33]李伟伟,杜峰,张馨月,等.黄土丘陵区9种群落共存种干旱胁迫下抗氧化酶的响应[J].西北植物学报,2017(6):1145-1154.[34]王尚堃.多胺及其合成抑制剂对干旱胁迫下李苗叶片SOD、POD和CAT活性的影响[J].山东农业大学学报(自然科学版),2019,50(3):388-392.[35]高鑫宇.干旱胁迫及复水对大豆抗氧化特性的影响[D].哈尔滨:东北农业大学,2017.[36]霍建玲,邢雪莹,杨雪,等.干旱对黑龙江省大豆品种农艺性状的影响[J].分子植物育种,2018(5):1668-1676.[37]谢志玉,张文辉.干旱和复水对文冠果生长及生理生态特性的影响[J].应用生态学报,2018,29(6):1759-1767.[38]杞金华,章永江,张一平,等.水分条件变化对哀牢山亚热带常绿阔叶林林下幼苗死亡率的影响[J].生态学报,2015(8):107-114.

Memo

Memo:
-
Last Update: 2021-01-08