|Table of Contents|

Research Progress on the Role of Crop Stomata and Its Influencing Factors

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年03
Page:
143-148
Research Field:
Publishing date:

Info

Title:
Research Progress on the Role of Crop Stomata and Its Influencing Factors
Author(s):
YANG Tianle12WU Fengfeng12LIU Tao12WU Wei12ZHOU Ping12SUN Chengming12
(1.Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation Physiology,College of Agriculture,Yangzhou University,Yangzhou,Jiangsu 225009;2.Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops,Yangzhou University,Yangzhou,Jiangsu 225009)
Keywords:
stomateleafinfluence factorsphotosynthesiswater utilization
PACS:
-
DOI:
10.11937/bfyy.20192222
Abstract:
Stomates were the channels for gas exchange and water loss between the inside and outside of crop leaves and the changes of stomate characters could reflect the crop growth status well.It was one of the important factors to regulate the growth and development of crops.Combined with previous research,we expounded the functions of stomate characters during the crop growth and development,especially the effects on water utilization,transpiration and photosynthesis.In this study,we further generalized many factors that could affect stomate characters,which were including CO2,temperature,moisture,light,plant hormones and others.Finally,we analyzed the shortcomings in the current research and put forward suggestions and prospects for future research and application.We hoped these results could provide a reference for further research of crop stomata and promote its application in production.

References:

[1]PETERSON K M,RYCHEL A L,TORII K U.Out of the mouths of plants:The molecular basis of the evolution and diversity of stomatal development[J].Plant Cell,2010,22(2):296-306.[2]商业绯,李明,丁博,等.生长素调控植物气孔发育的研究进展[J].植物学报,2017,52(2):235-240.[3]刘俊,郭志富.植物气孔发育分子机制研究进展[J].安徽农业科学,2015(35):12-15.[4]罗永忠,成自勇.水分胁迫对紫花苜蓿叶水势、蒸腾速率和气孔导度的影响[J].草地学报,2011,19(2):215-221.[5]HETHERINGTON A M,WOODWARD F I.The role of stomata in sensing and driving environmental change[J].Nature,2003,424(6951):901-908.[6]高彦萍,冯莹,马志军,等.水分胁迫下不同抗旱类型大豆叶片气孔特性变化研究[J].干旱地区农业研究,2007,25(2):77-79.[7]杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J].植物生态学报,2001,25(3):312-316.[8]王曙光,李中青,贾寿山,等.小麦叶片气孔性状与产量和抗旱性的关系[J].应用生态学报,2013,24(6):1609-1614.[9]YANG J C,WEYERS J,ZHU QING SEN,et al.Effect of water deficit stress on the stomatal frequency stomatal conductance and abscisic acid in rice[J].Acta Agronomica Sinica,1995,21(2):96-101.[10]纪莎莎.基于作物叶片尺度水分高效利用的气孔最优调控机理研究与应用[D].北京:中国农业大学,2017.[11]王卫锋,张岁岐.不同倍性小麦气孔特征随叶位变化及其对水分利用效率的调控[J].植物生理学报,2015(4):459-464.[12]OSBORNE C P,SACK L.Evolution of C4 plants:A new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2012,367(1588):583-600.[13]秦茜,朱俊杰,关心怡,等.七个甘蔗品种叶片解剖结构特征与光合能力和耐旱性的关联[J].植物生理学报,2017(4):705-712.[14]COWAN I R.Stomatal behavior and environment[J].Advances in Botanical Research,1977(190):117-228.[15]AALTO T,HARI P,VESALA T.Comparison of an optimal stomatal regulation model and a biochemical model in explaining CO2 exchange in field conditions[J].Bratislavské Lekárske Listy,2002,36(3):315-326.[16]JARVIS P G,MCNAUGHTON K G.Stomatal control of transpiration:Scaling up from leaf to region[J].Advances in Ecological Research,1986,15(15):1-49.[17]JONES H G.Crop characteristics and the ratio between assimilation and transpiration[J].Journal of Applied Ecology,1976,13(2):605-622.[18]康绍忠,蔡焕杰,刘晓明,等.大气CO2浓度增加对农田蒸发蒸腾和作物水分利用的影响[J].水利学报,1996(4):18-26.[19]徐世昌,崔钦.水分胁迫对玉米光合性能及产量的影响[J].作物学报,1995,21(3):356-363.[20]XU D Q.Photosynthetic efficiency[J].Plant Physiology Communications,1988(5):1-5.[21]陈宇琪.模拟增温对C3、C4植物生长及水分利用的影响[D].呼和浩特:内蒙古大学,2014.[22]许大全.光合作用及有关过程对长期高CO2浓度的响应[J].植物生理学报,1994(2):81-87.[23]李丽,申双和,孙钢,等.土壤水分对冬小麦气孔导度及光合速率的影响与模拟[J].中国农业气象,2016,37(6):666-673.[24]康绍忠,张建华,梁宗锁,等.控制性交替灌溉:一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1-6.[25]王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003,14(10):1632-1636.[26]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制[J].热带农业科学,2005,25(4):80-85.[27]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理[J].作物学报,1994(5):601-606.[28]徐俊增,彭世彰,魏征,等.节水灌溉水稻叶片胞间CO2浓度及气孔与非气孔限制[J].农业工程学报,2010,26(7):76-80.[29]孙同兴,林金星.CO2倍增对紫花苜蓿叶片形态结构的影响[J].青岛农业大学学报(自然科学版),1999,16(1):1-5.[30]欧志英,彭长连.高浓度二氧化碳对植物影响的研究进展[J].热带亚热带植物学报,2003,11(2):190-196.[31]MESSINGER S M,BUCKLEY T N,MOTT K A.Evidence for Involvement of photosynthetic processes in the stomatal response to CO2[J].Plant Physiology,2006,140(2):771-778.[32]HAO G Y,HOLBROOK N M,ZWIENIECKI M A,et al.Coordinated responses of plant hydraulic architecture with the reduction of stomatal conductance under elevated CO2 concentration[J].Tree Physiology,2018,38(7):1041-1052.[33]BEERLING D J,CHALONER W G.Stomatal density responses of egyptian olea europaea L.leaves to CO2 change since 1327 BC[J].Annals of Botany,1993,71(5):431-435.[34]REDDY K R,ROBANA R R,HODGES H F,et al.Interactions of CO2 enrichment and temperature on cotton growth and leaf characteristics[J].Environmental & Experimental Botany,1998,39(2):117-129.[35]张大鹏.水稻叶片气孔的研究:II.不同生态条件下的气孔动态[J].福建农学院学报,1989(3):302-307.[36]LUOMALA E M,LAITINEN K,SUTINEN S,et al.Stomatal density,anatomy and nutrient concentrations of scots pine needles are affected by elevated CO2 and temperature[J].Plant,Cell and Environment,2005,28(6):733-749.[37]WANG X,ZHAO M,WANG Q,et al.Studies on stomatal characters and leaf temperature gap of different maize genotypes[J].Acta Agriculturae Boreali-Sinica,2004,19(1):71-74.[38]朱玉,黄磊,郑云普,等.高温对高丛越橘叶片气孔特征和气体交换参数的影响[J].果树学报,2016(4):444-456.[39]张玉屏,朱德峰,林贤青,等.高温对水稻剑叶生长和气孔导度影响[J].江西农业大学学报,2012,34(1):1-4.[40]李海波.水分亏缺和盐胁迫对水稻叶片气孔及其他生理性状的影响[D].沈阳:沈阳农业大学,2004.[41]陈倩倩.土壤水分含量和抗蒸腾剂对玉米气孔发育及生理过程的影响[D].杨凌:西北农林科技大学,2011.[42]ZHAO S L,CHEN W F,ZHENG J X.The effects of drought stress on stomatal characters of rice leaf[J].Acta Agriculturae Boreali-Sinica,2010,25(1):170-174.[43]DAVIES W J,KOZLOWSKI T T.Stomatal responses to changes in light intensity as influenced by plant Water Stress[J].Forest Science,1975,21(2):129-133.[44]成雪峰,张凤云,柴守玺.春小麦对不同灌水处理的气孔反应及其影响因子[J].应用生态学报,2010,21(1):36-40.[45]孙广玉,邹琦,程炳嵩,等.大豆光合速率和气孔导度对水分胁迫的响应[J].植物学报,1991(1):43-49.[46]PAREEK A,SOPORY S K,BOHNERT H J,et al.Abiotic stress adaptation in plants[J].Springer Netherlands,2010:141-154.[47]孟雷,陈温福,李磊鑫,等.减弱光照强度对水稻叶片气孔性状的影响[J].沈阳农业大学学报,2002,33(2):87-89.[48]何若天,吕成群.若干阔叶树树冠各层叶气孔密度及光照条件对气孔密度的影响[J].广西农业大学学报,1995,14(4):311-316.[49]RASCHKE K,HANEBUTH W F,FARQUHAR G D.Relationship between stomatal conductance and light intensity in leaves of Zea mays L.,derived from experiments using the mesophyll as shade[J].Planta,1978,139(1):73-77.[50]ZEIGER E,FIELD C.Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf blue light and par-dependent photosystems in guard cells[J].Plant Physiology,1982,70(2):370.[51]陆雯芸,房克,边红武,等.气孔发育及其调控因素的研究进展[J].植物生理学报,2016(6):782-788.[52]HUANG Y,ZHOU J H.Effects of plant growth regulators on stoma in low epidermis of tobacco leaves[J].Tobacco Science & Technology,2008,47(1):77-79.[53]李彦玲,杨爱珍,王晓琴,等.脱落酸(ABA)对不同裂果性枣叶片和果实表面气孔的影响[J].北方园艺,2015(16):22-26.[54]SAIBO N J,VRIEZEN W H,BEEMSTER G T,et al.Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins[J].Plant Journal,2003,33(6):989-1000.[55]纪文龙,范意娟,李辰,等.干旱胁迫下葡萄叶片气孔导度和水势动态的变化规律[J].中国农业大学学报,2014,19(4):74-80.[56]钟楚,朱勇.烟草气孔导度对光强的响应[J].中国生态农业学报,2013,21(8):966-972.[57]ROGERS A.The response of photosynthesis and stomatal conductance to rising CO2:Mechanisms and environmental interactions[J].Plant Cell & Environment,2010,30(3):258-270.[58]吴冰洁,刘玉军,姜闯道,等.叶片生长进程中气孔发育对叶温调节的影响[J].植物生理学报,2015(1):119-126.[59]卞景阳,张志刚,孙兴荣,等.水稻叶片气孔对CO2浓度变化的响应[J].江苏农业科学,2017,45(23):72-75.[60]肖建辉,周颖,叶剑秋,等.木薯叶片厚度、蜡质含量和气孔密度与抗朱砂叶螨的关系[J].热带作物学报,2017,38(3):541-544.[61]MONDA K,ARAKI H,KUHARA S,et al.Enhanced stomatal conductance by a spontaneous Arabidopsis tetraploid,Me-0,results from increased stomatal size and greater stomatal aperture[J].Plant Physiology,2016,170(3):1435.[62]左应梅,陈秋波,邓权权,等.土壤水分、光照和空气湿度对木薯气孔导度的影响[J].生态学杂志,2011,30(4):689-693.

Memo

Memo:
-
Last Update: 2020-02-27