|Table of Contents|

Identification and Characterization of CBL Family Genes in Watermelon (PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2017年15
Page:
18-24
Research Field:
Publishing date:

Info

Title:
Identification and Characterization of CBL Family Genes in Watermelon 
Author(s):
ZHU QianglongZHAO YulongLYU HuilingLUAN FeishiGAO Peng
(College of Horticulture and Landscape Architecture,Northeast Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast region),Ministry of Agriculture,Harbin,Heilongjiang 150030)
Keywords:
watermelon(Citrullus lanatus)CBL genesequence characterizationprotein structurephylogenycis-elements
PACS:
-
DOI:
10.11937/bfyy.20170580
Abstract:
Plant CBL family genes play important roles in response to environmental stimuli.However,the available knowledge of CBL in watermelon is insufficient.In this study,seven CBL genes (ClaCBL1-ClaCBL7) 〖STBZ〗were annotated in watermelon genome by bioinformatics method and their genomic distribution,molecular feature,phylogeny and cis-elements were also analyzed for providing valuable information for further functional dissection of watermelon CBL genes.The results showed that watermelon CBL genes were unevenly distributed in genome,and only one (ClaCBL4〖STBZ〗) had nine exons and the rest of them had eight exons.The putative coding sequence length of CBL ranges from 639 bp to 738 bp.On the basis of phylogeny,they were divided into three groups.Their coded proteins had FPSF motif,which interacted with CIPK kinases,and three EF-hand motifs,which could bind calcium ions.The putative proteins of ClaCBL were all localized into different subcellular locations except ClaCBL1 in extracellular matrix.In addition,there are several cis-elements existed in upstream sequences of watermelon CBL genes,which could response to different environmental stimuli and phytohormones.And the cis-element types and number of different watermelon CBL genes were not identical.These results indicated that watermelon CBL genes might involve in multiple biological processes and they had different functions.

References:

[1]LUAN S.The CBL-CIPK network in plant calcium signaling[J].Trends Plant Sci,2009(1):37-42.

[2]SANCHEZ-BARRENA M J,MARTINEZ-RIPOLL M,ALBERT A.Structural biology of a major signaling network that regulates plant abiotic stress:The CBL-CIPK mediated pathway[J].Int J Mol Sci,2013(3):5734-5749.

[3]KIM K N.Stress responses mediated by the CBL calcium sensors in plants[J].Plant Biotechnol Rep,2013(1):1-8.

[4]PANDEY G K,CHEONG Y H,KIM K N,et al.The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis[J].Plant Cell,2004(7):1912-1924.

[5]CHEONG Y H,KIM K N,PANDEY G K,et al.CBL1,a calcium sensor that differentially regulates salt,drought,and cold responses in Arabidopsis[J].Plant Cell,2003(8):1833-1845.

[6]LI Z Y,XU Z S,CHEN Y,et al.A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development[J/OL].PLoS One,2013(2):e56412.

[7]FUGLSANG A T,GUO Y,CUIN T A,et al.Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein[J].Plant Cell,2007(5):1617-1634.

[8]TANG R J,ZHAO F G,GARCIA V J,et al.Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis[J].Proc Natl Acad Sci USA,2015(10):3134-3139.

[9]ECKERT C,OFFENBORN J N,HEINZ T,et al.The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in Arabidopsis thaliana[J].Plant J,2014(1):146-156.

[10]TANG R J,LIU H,YANG Y,et al.Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis[J].Cell Res,2012(12):1650-1665.

[11]MAO J,MANIK S M N,SHI S,et al.Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana[J].Genes,2016,7(9):62.

[12]QUAN R,LIN H,MENDOZA I,et al.SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J].Plant Cell,2007(4):1415-1431.

[13]JI H,PARDO J M,BATELLI G,et al.The salt overly sensitive (SOS) pathway:Established and emerging roles[J].Mol Plant,2013(2):275-286.

[14]CHEONG Y H,SUNG S J,KIM B G,et al.Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis[J].Mol Cells,2010(2):159-165.

[15]XU J,LI H D,CHEN L Q,et al.A protein kinase,interacting with two calcineurin B-like proteins,regulates K+ transporter AKT1 in Arabidopsis[J].Cell,2006(7):1347-1360.

[16]KOLUKISAOGLU U,WEINL S,BLAZEVIC D,et al.Calcium sensors and their interacting protein kinases:Genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J].Plant Physiol,2004(1):43-58.

[17]GU Z,MA B,JIANG Y,et al.Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses[J].Gene,2008(1-2):1-12.

[18]WANG M,GU D,LIU T,et al.Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance[J].Plant Mol Biol,2007(6):733-746.

[19]李利斌,刘开昌,王殿峰,.玉米CBL基因的生物信息学分析[J].玉米科学,2010(1):6-11.

[20]MAHAJAN S,SOPORY S K,TUTEJA N.Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum)[J].FEBS J,2006(5):907-925.

[21]李利斌,刘开昌,王殿峰,.高粱CBL家族基因的鉴定和初步分析[J].山东农业科学,2009(6):1-5.

[22]李利斌,王殿峰,刘立锋,.大白菜CBL家族基因的鉴定和遗传进化分析[J].山东农业科学,2009(5):4-7.

[23]张永涛,刘立峰,李化银,.三个新的大白菜CBL基因的鉴定和特征分析[J].山东农业科学,2012(12):7-10.

[24]刘淑梅,王施慧,刘明毓,.番茄CBL家族基因的鉴定和遗传进化分析[J].分子植物育种,2015(10):2268-2273.

[25]刘明毓,纪复勤,马强,.甜瓜CBL基因的鉴定和特征分析[J].山东农业科学,2015(10):17-21.

[26]FAN M,HUANG Y,ZHONG Y,et al.Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes[J].Planta,2014(2):397-410.

[27]HU B,JIN J,GUO A Y,et al.GSDS 2.0:An upgraded gene feature visualization server[J].Bioinformatics,2015(8):1296-1297.

[28]TAMURA K,STECHER G,PETERSON D,et al.MEGA6:Molecular evolutionary genetics analysis version 6.0[J].Mol Biol Evol,2013(12):2725-2729.

[29]HORTON P,PARK K J,OBAYASGI T,et al.WoLF PSORT:Protein localization predictor[J].Nucleic Acids Res,2007(Web Server issue):585-587.

[30]EMANUELSSON O,BRUNAK S,VON H G,et al.Locating proteins in the cell using TargetP,SignalP and related tools[J].Nat Protoc,2007(4):953-971.

[31]LESCOT M,DHAIS P,THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Res,2002(1):325-327.

[32]THODAY - KENNEDY E L,JACOBS A K,ROY S J.The role of the CBL - CIPK calcium signalling network in regulating ion transport in response to abiotic stress[J].Plant Growth Regul,2015,76(1):3 - 12.

Memo

Memo:
-
Last Update: 2017-08-03