|Table of Contents|

Effects of Heat Stress on Several Physiological Traits in Heat-yolerant and Heat-Sensitive Genotypes of Flowering Chinese Cabbage(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2012年01期
Page:
1-6
Research Field:
Publishing date:

Info

Title:
Effects of Heat Stress on Several Physiological Traits in Heat-yolerant and Heat-Sensitive Genotypes of Flowering Chinese Cabbage
Author(s):
LI Rong-hua1 GUO Pei-guo1 ZHANG Hua2 HUANG Hong-di2 ZHENG Yan-song2 XIA Yan-shi1
1.College of Life Sciences,Guangzhou University,Guangzhou,Guangdong 510006;?
2.Guangzhou Academy of Agricultural Sciences,Guangzhou,Guangdong 510308
Keywords:
flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) heat stress osmolyte active oxygen scavenging
PACS:
S 634.5
DOI:
-
Abstract:
Four flowering chinese cabbage were selected as material, electrolytic leakage rate and the production and scavenging of active oxygen in the leaves of heat-tolerant and heat-sensitive genotypes of flowering Chinese cabbage under heat stress were studied. The results showed that most of traits including the contents of proline and betaine, electrolytic leakage rate, malondialdehyde (MDA) content, O-?2producing rate, H2O2 content, activities of superoxide dismutase (SOD) and peroxidase (POD) increased slightly and were not significant differences under the short (1 d) period of heat stress in four genotypes of flowering Chinese cabbage, except catalase (CAT) which its activity rapidly increased and reached the peak in two heat-sensitive genotypes under 1 d of heat stress. The values of these physiological traits continuously increased with different degree in four genotypes with stress time (3~7 d.), and showed that the betaine content, the activities of SOD, POD and CAT in heat-tolerant genotypes were significant higher than that in heat-sensitive genotypes, electrolytic leakage rate, MDA content, O-?2 producing rate and H2O2 content were significant lower than that in sensitive genotypes, while proline accumulation was not related to heat tolerance or heat sensitive in flowering Chinese cabbage under heat stress condition.

References:

[1]张华, 刘自珠.菜薹(菜心)的市场需求与育种现状[J].中国蔬菜,2010(3):10-12

.[2]Lobell D B, Asner G P. Climate and management contributions to recent. trends in U.S. agricultural yields [J].Science,2003,299(5609):1032
[3]曹毅,李春梅,邓燏,等.不同菜心品种耐热性研究[J].西南师范大学学报(自然科学版),2010,35(5):128-131.
[4]何晓明,潘瑞炽,廖飞雄.菜心耐热变异体离体筛选研究[J].广东农业科学,1999(5):17-18.
[5]廖飞雄,潘瑞炽.热胁迫下菜心脯氨酸含量变化及其在耐热中的作用[J].华南师范大学学报(自然科学版),2001(2):45-48.
[6]廖飞雄,潘瑞炽.菜心耐羟脯氨酸变异筛选方法的研究[J].江西农业大学学报,2003,25(6):875-878.
[7]廖飞雄,潘瑞炽.菜心耐羟脯氨酸初选系的耐热性[J].热带亚热带植物学报,2004,12(4):359-362.
[8]廖飞雄,潘瑞炽.羟脯氨酸对离体培养的菜薹幼苗、茎尖和愈伤组织的生理效应[J].植物生理学通讯,2004,40(1):56.
[9]李植良,孙保娟,罗少波,等.高温胁迫下华南茄子的耐热性表现及其鉴定指标的筛选 [J].植物遗传资源学报,2009,10(2):244-248
[10]Mishra V,Srivastava G,Prasad S M.Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation [J]. Scientia Horticulturae,2009,120:373-378.
[11]郝再彬,苍晶,徐仲.植物生理实验技术[M].哈尔滨:哈尔滨工业大学出版社,2004:101-116.
[12]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,39(6):55-57.
[13]郭培国,李荣华.夜间高温胁迫下对水稻叶片光合机构的影响[J].植物学报,2000,47(7):13-18.
[14]Bradford M.A rapid and sensitive method for the quantitation of microgram. quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
[15]Giannopolitis C N, Ries S K. Superoxide dismutase .I. Occurrence in higher plants[J]. Plant Physiol,1977,59:309-314.
[16]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:25-28.
[17]郭培国,宋波龙,许兰桂,等.光谱法测定植物组织中甜菜碱含量方法的改良[J].广州大学学报(自然科学版),2011,10(3):32-36.
[18]Martineau J R, Specht J E, Williams J H,et al. Temperature tolerance. in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability [J].Crop Science,1979,19:75-78.
[19]Guo P,Baum M,Grando S,et al.Differentially expressed genes between. drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage[J].Journal of Experimental Botany,2009,60(12):3531-3544.
[20]Wahid A, Gelani S, Ashraf M,et al.Heat Tolerance in plants: An overview.[J].Environmental and Experimental Botany,2007,61:199-223.
[21]Essemine J,Ammar S, Bouzid S. Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence [J]. Journal of Biological Sciences,2010,10(6):565-572.
[22]李敏,王维华,王然,等.高温胁迫对菠菜叶片保护酶活性和膜透性的影响[J].园艺学报,2004,31(1):99-100.
[23]贾志银,巩振辉,许红娟,等.高温胁迫对辣椒幼苗生长及生理性状的影响[J].北方园艺,2010(12):5-8.[24]Savchenko G E, Klyuchareva E A, Abrabchik L M, et al.Effect of periodic heat shock on the membrane system of etioplasts[J]. Russ J Plant Physiol,2002,49:349-359.
[25]Fokar M,Nguyen H T, Blum A.Heat tolerance in spring wheat. I. Estimating cellular thermotolerance and heritability[J].Euphytica,1998,104:1-8.
[26]Hasan M A,Ahmed J U, Bahadur M M, et al.Effect of late planting heat stress on membrane thermostability, proline content and heat susceptibility index of different wheat cultivars[J].J. NatnScLFoundation Sri Lanka., 2007,35(2):109-117.
[27]Wahid A, Close T J.Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves[J].Biol Plant,2007,51:104-109.
[28]耶兴元,马锋旺,王顺才,等.高温胁迫对猕猴桃幼苗叶片某些生理效应的影响[J].西北农业科技大学学报(自然科学版),2004,32(12):33-37.

Memo

Memo:
-
Last Update: 2014-08-22