|Table of Contents|

Effects of Copper Stress on Seed Germination and Seedling Growth of Chrysanthemum leucanthemum

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2025年8
Page:
64-71
Research Field:
Publishing date:

Info

Title:
Effects of Copper Stress on Seed Germination and Seedling Growth of Chrysanthemum leucanthemum
Author(s):
LIU LeiSHAO Mingqi
(College of Horticulture,Xinyang College of Agriculture and Forestry,Xinyang,Henan 464000)
Keywords:
Chrysanthemum leucanthemumcopper stressseed germinationseedling growth
PACS:
S 682.1+1
DOI:
10.11937/bfyy.20244017
Abstract:
Taking Chrysanthemum leucanthemum as the test material,the effects of different mass concentrations of Cu2+ (0,25,50,100,200 mg·L-1) on the physiology of seeds and seedlings were studied by petri dish and pot culture method,and the Cu2+ stress threshold of Chrysanthemum leucanthemum was explored,in order to provide reference for the landscape ecological restoration of Chrysanthemum leucanthemum in copper-contaminated areas.The results showed that with the increase of Cu2+ concentration,the germination rate,germination potential,plant height,stem thick and crown breadth of Chrysanthemum leucanthemum showed a phenomenon of ‘low promotion and high inhibition’.The number of seedling leaves,the maximum leaf length and the maximum leaf width showed a trend of decreasing first,then increasing and finally decreasing.The number of roots,root length,fresh weight and dry weight decreased gradually.The activity of superoxide dismutase (SOD) in seedling leaves increased significantly (P<0.05) when Cu2+ concentration was 25 mg·L-1 and 50 mg·L-1.The content of malondialdehyde (MDA) increased gradually with the increasing of Cu2+ concentration.Correlation analysis showed that there was a significant positive correlation between stalk height and stem diameter,maximum leaf length,maximum leaf width,root length and SOD activity (P<0.05).In summary,it could be seen that Chrysanthemum leucanthemum had high tolerance under low concentration of copper stress,high seed germination rate and seedling grow well.The highest environmental copper concentration that seedlings could tolerate was 50 mg·L-1.

References:

[1]刘凯月,郭玉洁,刘冬云.干旱和盐胁迫对3种地被植物种子萌发特性的影响[J].林业与生态科学,2018,33(1):88-92.[2]茹先古丽·克依木.大滨菊在库尔勒地区的常规栽培技术[J].农村科技,2009(4):88-89.[3]李芙蓉,尹娇阳,于波,等.铜胁迫对苹果幼苗根际土壤养分、酶活性及微生物的影响[J].北方园艺,2023(19):71-77.[4]冷翔鹏.葡萄应答铜胁迫的分子机理研究[D].南京:南京农业大学,2015.[5]黄荣,段明明,文珂,等.外源褪黑素对铜胁迫下大豆幼苗生长及生理特性的影响[J].华南农业大学学报,2023,44(5):780-786.[6]代鸣涛,梁佳,郝甜甜,等.铜胁迫对人参生理参数和品质的影响研究[J].核农学报,2024,38(2):396-403.[7]唐孟泉,黄佳欢,陈瑾元,等.植物的铜稳态研究综述[J].江苏农业科学,2019,47(10):305-311.[8]王佳乐,步凡,何佳丽,等.铜胁迫对苹果幼苗生长及生理特性的影响[J].江苏农业科学,2023,51(16):105-113.[9]BHADURI A M,FULEKAR M H.Antioxidant enzyme responses of plants to heavy metal stress[J].Reviews in Environmental Science and Bio/Technology,2012,11(1):55-69.[10]王华宇,张树明,何贵整.大滨菊离体快繁技术研究[J].北方园艺,2012(19):143-145.[11]再依同古丽·斯拉一丁.大滨菊在库尔勒地区的栽培管理技术[J].中国园艺文摘,2016,32(1):154-155.[12]黄可,周少鹏,蒋思远,等.浅析花境植物的色彩配置[J].城市建设理论研究(电子版),2016(30):117-120.[13]嵇凌.大滨菊和短舌匹菊生殖特性研究[D].南京:南京农业大学,2015.[14]姜珊,徐拾佳,崇晓泽,等.矮滨菊的耐荫性研究[J].河北林业科技,2017(4):20-23.[15]章志红,顾凯利,季节.盐胁迫对五种菊科植物种子萌发的影响[J].湖北农业科学,2020,59(16):20-25.[16]李瑞莉,齐淑艳,刘娜,等.铅、镉、铜对4种入侵植物种子萌发及幼苗生长的影响[J].东北师大学报(自然科学版),2017,49(4):101-108.[17]肖红,徐长林,鱼小军,等.不同产地扁蓿豆种子萌发期抗旱性综合评价[J].干旱地区农业研究,2014,32(5):73-77,265.[18]俞明惠,程玉,范志强,等.铜对波斯菊种子萌发及幼苗生长的影响[J].安徽农学通报,2019,25(21):56-58.[19]聂萌恩,宁娜,张一中,等.褪黑素对盐胁迫下高粱种子萌发的缓解效应及生理机制[J].种子,2023,42(4):31-40,63.[20]朱佳鹏,罗超,李洋,等.铜胁迫对滇水金凤种子萌发及幼苗生长的影响[J].生物学杂志,2023,40(1):64-68.[21]尹秀,德珍,张二豪,等.不同环境因子对藏药甘青青兰种子萌发及幼苗生长的影响[J].生物学杂志,2020,37(5):58-61.[22]刘涛,向垒,余忠雄,等.水稻幼苗对纳米氧化铜的吸收及根系形态生理特征响应[J].中国环境科学,2015,35(5):1480-1486.[23]薛盈文,王玉凤,赵长江,等.铜胁迫对小麦种子萌发及幼苗抗氧化系统的影响[J].江西农业大学学报,2016,38(1):54-59.[24]刘骐华,王慧慧,刘璐,等.铜、镉、铅对高羊茅种子萌发及幼苗生长的影响[J].草原与草坪,2019,39(4):10-18.[25]刘家华,陈克诚,程娟,等.铜胁迫下大薸对铜的吸收特征与生理响应[J].环境科学与技术,2022,45(8):61-68.[26]CHEN F,WANG F,WU F,et al.Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance[J].Plant Physiology and Biochemistry,2010,48(8):663-672.[27]刘欢,田晓璇,宋红.铜胁迫对玉蝉花幼苗生长及生理指标的影响[J].北方园艺,2021(10):71-79.[28]BAILEY-SERRES J,MITTLER R.The roles of reactive oxygen species in plant cells[J].Plant Physiology,2006,141(2):311.[29]刘淑娟,欧阳雪灵,杨爱红,等.樟树对铜胁迫的生长和生理响应及铜富集转运特性分析[J].植物科学学报,2024,42(2):232-241.

Memo

Memo:
-
Last Update: 2025-05-12