|Table of Contents|

Effects of Cleome spinosa Fumigation on Bacterial Diversity in Cucumber Rhizosphere Soil

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2025年7
Page:
114-121
Research Field:
Publishing date:

Info

Title:
Effects of Cleome spinosa Fumigation on Bacterial Diversity in Cucumber Rhizosphere Soil
Author(s):
ZHANG Xingzhe12WANG Baicheng1MENG Xianghai1XU Dehai1ZHANG Shuai1ZHANG Yanju2
(1.Mudanjiang Branch,Heilongjiang Academy of Agricultural Sciences,Mudanjiang,Heilongjiang 157000;2.College of Plant Protection,Northeast Agricultural University,Harbin,Heilongjiang 150030)
Keywords:
Cleome spinosarhizosphere soilbacteriadiversity
PACS:
S 511
DOI:
10.11937/bfyy.20244013
Abstract:
Cucumber rhizosphere soil was taken as the test material,and four methods were used to treat cucumber rhizosphere soil (A,blank control,no inoculation of cucumber wilt pathogen,no fumigation treatment;B,only inoculated with cucumber wilt pathogen without any fumigation treatment;C,fumigation with 0.05 g·kg-1chloropicrinand inoculation with cucumber wilt pathogen;D,fumigationusing 6.0 g·kg-1 of crushed material from Cleome spinosa plants and inoculation with cucumber wilt pathogen).Subsequently,high-throughput sequencing technology was used to identify the bacterial diversity of cucumber rhizosphere soil under each treatment,with 16S as the target area,the effect of Cleome spinosa on bacterial diversity in cucumber rhizosphere soil was studied,in order to provide reference for maintain a good soil microbial community.The results showed that in the rhizosphere soil of cucumber,the genera of bacteria with higher overall abundance include Azotobacter,Pseudomonas,Gemmatimonas,Rhodanobacter,Sphingomonas,Bryobacter,Arenimonas,Pseudomonas,Lysobacter and Luteimonas.Fumigation treatment of 6 g·kg-1Cleome spinosa fragments can increase the abundance of nitrogen fixing bacteria and pseudomonas genera.

References:

[1]NAIR A,NGOUAJIO M.Soil microbial biomass,functional microbial diversity,and nematode community structure as affected by cover crops and compost in an organic vegetable production system[J].Applied Soil Ecology,2012,58:45-55.[2]张雨圣,张帆,郭守军,等.不同肥料配施对樱桃园土壤微生物群落结构及多样性的影响[J].北方园艺,2024(16):65-72.[3]张飞雪,赵根,周肖瑜,等.发酵番茄秸秆对番茄产量构成及土壤微生物群落组成的影响[J].北方园艺,2024(18):64-72.[4]李金花,高克祥,万利,等.微生物菌剂对楸树幼苗生长及根际土细菌群落结构的影响[J].生态学报,2020,40(21):7588-7601.[5]袁鹏飞,刘文瑜,杨发荣,等.农田土壤根际微生物群落多样性特征研究[J].西北农业学报,2024,33(9):1714-1723.[6]COUTINHO H M,DOSSANTOS F M,ALMEIDA BEZERRA J,et al.Polyphenolic composition,antibacterial,modulator and neuroprotective activity of Tarenaya spinosa (Jacq.) Raf.(Cleomaceae)[J].Asian Pacific Journal of Tropical Biomedicine,2019,9(1):12.[7]赵星.醉蝶花茎叶粉碎物对葡萄灰霉病的抑制作用[J].种子科技,2021,39(14):25-26,113.[8]南镇武,刘柱,代红翠,等.不同轮作休耕下潮土细菌群落结构特征[J].环境科学,2021,42(10):4977-4987.[9]PICKEL B,DAI N,MAYMON M,et al.Development of a reliable screening technique for determining tolerance to Macrophomina phaseolina in strawberry[J].European Journal of Plant Pathology,2020,157(4):707-718.[10]路粉,张军,吴杰,等.设施黄瓜主要病害发生及综合防控[J].现代农药,2024,23(2):22-25,65.[11]DELGADO-BAQUERIZO M,OLIVERIOA M,BREWER T E,et al.A global atlas of the dominant bacteria found in soil[J].Science,2018,359(6373):320-325.[12]ZHANG X,MENG X,JIAO X,et al.Preventive effect of Cleome spinosa against cucumber Fusarium wilt and improvement on cucumber growth and physiology[J].3 Biotech,2024,14(4):97.[13]HO A,LKE C,FRENZEL P.Recovery of methanotrophs from disturbance:population dynamics,evenness and functioning[J].The ISME Journal,2011,5(4):750-758.[14]裴广廷,李夏,贺同鑫,等.广西喀斯特石漠化区不同植被恢复模式下土壤微生物多样性与群落结构特征及驱动因素分析[J].地理科学,2024,44(9):1630-1642.[15]GAO G,YIN D,CHEN S,et al.Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE[J].PLoS One,2012,7(2):e31806.[16]雷海英,赵青松,杨潇,等.苦参根际高效固氮菌的分离及复合菌肥对幼苗的促生效应[J].生物技术通报,2020,36(9):157-166.[17]SARKAR J,CHAKRABORTY B,CHAKRABORTY U.Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury[J].Journal of Plant Growth Regulation,2018,37(4):1396-1412.[18]徐如玉,左明雪,袁银龙,等.氮肥用量优化对甜玉米氮肥吸收利用率及氮循环微生物功能基因的影响[J].南方农业学报,2020,51(12):2919-2926.[19]郑永波.秸秆堆肥还田对玉米根际土壤功能微生物数量的影响[J].齐齐哈尔大学学报(自然科学版),2024,40(1):1-6.[19]郑永波.秸秆堆肥还田对玉米根际土壤功能微生物数量的影响[J].齐齐哈尔大学学报(自然科学版),2024,40(1):81-86.[20]YU H,GAO Q,SHAO Z,et al.Decreasing nitrogen fertilizer input had little effect on microbial communities in three types of soils[J].PLoS One,2016,11(3):e0151622.[21]ZHONG W,BIAN B,GAO N,et al.Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than Archaea in greenhouse-based high N input vegetable soil[J].Soil Biology and Biochemistry,2016,93:150-159.[22]JAYAMOHAN N S,PATIL S V,KUMUDINI B S.Seed priming with Pseudomonas putida isolated from rhizosphere triggers innate resistance against Fusariumwilt in tomato through pathogenesis-related protein activation and phenylpropanoid pathway[J].Pedosphere,2020,30(5):651-660.[23]PRITCHARD A E,VASIL M L.Nucleotide sequence and expression of a phosphate-regulated gene encoding a secreted hemolysin of Pseudomonas aeruginosa[J].Journal of Bacteriology,1986,167(1):291-298.[24] 谢田朋,柳娜,刘越敏,等.化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J].生物技术通讯,2022,38(3):28-40.

Memo

Memo:
-
Last Update: 2025-04-22