|Table of Contents|

Analysis of Salt-alkali Tolerance of Wild Type and Hair Root Gshdz4 Transformation in Trifolium pratense

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2025年5
Page:
74-82
Research Field:
Publishing date:

Info

Title:
Analysis of Salt-alkali Tolerance of Wild Type and Hair Root Gshdz4 Transformation in Trifolium pratense
Author(s):
TANG Jixiang1ZHANG Junfeng2LIU Mengyu1LIU Yuhang2LI Yanping2CAO Lei1
(1.College of Horticulture and Landscape Architecture,Northeast Agricultural University,Harbin,Heilongjiang 150030;2.College of Geography and Tourism,Harbin University,Harbin,Heilongjiang 150030)
Keywords:
LeguminosaeTrifolium pratensesalt and alkali resistanceGshdz4
PACS:
S 541+.2
DOI:
10.11937/bfyy.20242368
Abstract:
Taking seeds of Trifolium pratense as the test material,the methods of treating the seeds and seedlings of Trifolium pratense with 40,80,120,160,and 320 mmol·L-1 as well as NaHCO3 solutions at concentrations of 20,40,60,80,and 160 mmol·L-1 were used.Various growth parameters included germination potential and root length were examined under these stress conditions.Plant phenotypes were observed at different time points (0,4,8,24,32,44,48 hours and 52 hours),and the proportion of affected plants was determined,in order to provide insights into improving alkaline tolerance and breeding alkali-resistant chimera Trifolium pratense varieties.The results showed that the wild type could tolerate salt stress up to a concentration of 80 mmol·L-1and alkali stress up to a concentration of 40 mmol·L-1.The alkali-tolerant gene GSHDZ4-GFP was introduced into the root system of Trifolium pratense using Agrobacterium K599.The expression pattern of the Gshdz4 gene in Trifolium pratense roots was detected using laser confocal microscopy by observing green fluorescent protein signals.Super oxide dismutase (SOD) activity and malondialdehyde (MDA) contents were measured in both non-transgenic and transgenic roots.The results indicated that transplantation of Gshdz4 increased the tolerance of plant roots to alkali stress.

References:

[1]胡一,韩霁昌,张扬.盐碱地改良技术研究综述[J].陕西农业科学,2015,61(2):67-71.[2]牛书丽,蒋高明.豆科植物在中国草原生态系统中的地位及其生理生态研究[J].植物学通报,2004,21(1):9-18.[3]陈林楠,岳琳.野生大豆资源利用研究综述[J].种子科技,2022,40(11):15-18.[4]尚盼盼,沈秉娜,邵璐,等.逆境胁迫对红三叶影响的研究进展[J].黑龙江畜牧兽医,2023(3):26-30.[5]SABUDAK T,GULER N.Trifolium L.:A review on its phytochemical and pharmacological profile[J].Phytotherapy Research,2009,23(3):439-446.[6]龙悦,郑永昌.红车轴草的研究进展[J].中国医药导报,2009,6(13):10-11.[7]姜滨,周春艳,姜殿勤.红车轴草的实用价值及栽培[J].特种经济动植物,2008,11(2):36-37.[8]刘娇,帅鹏.HD-ZIP转录因子响应病菌与非生物胁迫研究进展[J].福建农业学报,2021,36(1):124-134.[9]CAO L,YU Y,DUANMU H,et al.A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene,Gshdz4,positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis[J].BMC Plant Biology,2016,16(1):184.[10]钟宣伯.HD-Zip转录因子GmHdz4对大豆耐旱性影响的研究[D].杭州:浙江大学,2020.[11]杨雪君,毛金枫,张雪,等.盐碱胁迫对红车轴草种子萌发的影响[J].北方园艺,2016(9):69-74.[12]殷秀杰,燕昌江,李凤兰,等.混合盐碱胁迫对白三叶种子萌发的影响[J].东北农业大学学报,2009,40(12):58-61.[13]朱依晗,刘宁芳,胡龙兴,等.8份绿穗苋种子萌发期耐盐碱性综合评价[J].草地学报,2021,29(10):2176-2183.[14]祁栋灵,张三元,曹桂兰,等.水稻发芽期和幼苗前期耐碱性的鉴定方法研究[J].植物遗传资源学报,2006,7(1):74-80.[15]张煜婷,虎淘淘,赵瑞秋,等.外源Spd对盐碱胁迫下园林小菊生长及生理的影响[J].北方园艺,2024(16):49-56.[16]郭丽,朱飞雪,柴梦颖,等.盐碱胁迫下薄皮木苗期生理响应分析[J].北方园艺,2024(19):45-51.[17]YAN F,QU D,ZHAO Y Y,et al.Effects of exogenous 5-aminolevulinic acid on PIP1 and NIP aquaporin gene expression in seedlings of cucumber cultivars subjected to salinity stress[J].Genetics and Molecular Research,2014,13(2):2563-2573.[18]朱建峰,杨秀艳,武海雯,等.植物种子萌发期耐盐碱性提高技术研究进展[J].生物技术通报,2020,36(2):158-168.[19]袁国庆,申忠宝,张瑞博,等.红三叶种子萌发及幼苗生长对混合盐胁迫的响应[J].黑龙江农业科学,2016(1):145-148.[20]吴楠.委陵菜和白三叶草对盐碱胁迫的生理与形态学响应[D].太谷:山西农业大学,2015.

Memo

Memo:
-
Last Update: 2025-03-14