|Table of Contents|

Transcriptome Analysis of Chrysanthemum morifolium Under Drought Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2025年3
Page:
9-17
Research Field:
Publishing date:

Info

Title:
Transcriptome Analysis of Chrysanthemum morifolium Under Drought Stress
Author(s):
QIU Yanqiu1CHEN Jiaying1YANG Linli2ZHANG Xiaoshen3ZHANG Lixin1ZHANG Hongrui1
(1.College of Agricultural,Henan Agricultural University,Zhengzhou,Henan 450046;2.Henan Province Hospital of Traditional Chinese Medicine,Zhengzhou,Henan 450002;3.Zhengzhou Institute of Agriculture and Forestry Sciences,Zhengzhou,Henan 450005)
Keywords:
Chrysanthemum morifolium (Ramat)drought stresstranscriptomedifferentially expressed genesmetabolic pathways
PACS:
S 682.1+1
DOI:
10.11937/bfyy.20242097
Abstract:
Taking C.morifolium ‘Boju’ and C.morifolium ‘Hangju’ as the test materials,the changes of differentially expressed genes and metabolic pathways in C.morifolium ‘Boju’ and C.morifolium ‘Hangju’ during the blooming period under drought stress were investigated by using high-throughput transcriptome sequencing,in order to provide a reference for clarifying the molecular mechanisms of C.morifolium in response to drought stress.The results showed that 28 145 and 4 831 DEGs were identified in C.morifolium ‘Boju’ and C.morifolium ‘Hangju’,respectively,under drought stress,with more DEGs enriched in C.morifolium ‘Boju’.The KEGG metabolic pathway enrichment analysis revealed that the DEGs in C.morifolium ‘Boju’ were mainly enriched in the areas of oxidative phosphorylation,amino acid and nucleotide sugar metabolism,galactose metabolism,cysteine and methionine metabolism,phenylpropanoid biosynthesis,stilbenoid,diarylheptanoid and gingerol biosynthesisand flavonoid biosynthesis,etc.,whereas in C.morifolium ‘Hangju’,DEGs were mainly concentrated in photosynthesis-antenna proteins,alanine,aspartate and glutamate metabolism,phenylpropanoid biosynthesis,stilbenoid,diarylheptanoid and gingerol biosynthesisand flavonoid biosynthesis,etc.Preliminary screening of differentially expressed genes after drought treatment in C.morifolium ‘Boju’ and C.morifolium‘Hangju’ by transcriptome sequencing revealed that C.morifolium ‘Boju’ responded to drought stress mainly by enhancing energy metabolism,amino acid metabolism,and secondary metabolism,while C.morifolium ‘Hangju’ responded to drought mainly by enhancing carbohydrate metabolism,amino acid metabolism,secondary metabolism,and photosynthesis.

References:

[1]毛佳昊,熊晓辉,卢一辰.茉莉酸调控植物应对逆境胁迫作用的研究进展[J].生物加工过程,2021,19(4):413-419,462.[2]管晓丹,马洁茹,黄建平,等.海洋对干旱半干旱区气候变化的影响[J].中国科学:地球科学,2019,49(6):895-912.[3]WANG W N,MIN Z,WU J R,et al.Physiological and transcriptomic analysis of Cabernet Sauvginon (Vitis vinifera L.) reveals the alleviating effect of exogenous strigolactones on the response of grapevine to drought stress[J].Plant Physiology and Biochemistry,2021,167:400-409.[4]于玲,党佳旗,程美意,等.菊花应用价值调查研究[J].现代园艺,2022(13):21-23.[5]段利萍.外源褪黑素对茶菊干旱胁迫伤害的缓解作用及生理机制[D].泰安:山东农业大学,2019.[6]叶梦倩,邓静,彭杰,等.菊花本草考证[J].中成药,2022,44(6):1912-1917.[7]康四和,聂晶,陈科力,等.药用菊花植物形态特征比较及质量评价[J].中药材,2022,45(1):49-57.[8]张红瑞,黄勇,周艳,等.河南6个栽培类型药菊内在质量的研究[J].中药材,2017,40(7):1507-1510.[9]张红瑞,周艳,黄勇,等.采收时间对6个栽培类型药菊产量品质的影响[J].山东农业科学,2016,48(7):82-85.[10]张红瑞,李贺敏,张燕,等.河南引种杭白菊主要有效成分的比较[J].信阳农林学院学报,2016,26(3):89-91,98.[11]张红瑞,李炯,于红卫,等.河南引种药菊生态适应性研究[J].河南农业,2017(34):13-14.[12]孟盼盼,何海燕,曹钰昕,等.5个栽培类型药菊分枝期抗旱性综合评价[J].中国农业科技导报,2024,26(2):90-99.[13]张丽欣.药菊抗旱鉴定指标筛选及抗旱性评价[D].河南农业大学,2023.[14]杨小英,黄艳竹,郝春磊,等.干旱胁迫对彩菊切花幼苗根系构型和生理活性的影响[J].北方园艺,2024(2):47-54.[15]刘琳烁,陈宏宇,王国宝,等.基于转录组鉴定吊石苣苔干旱响应基因[J].贵州中医药大学学报,2024,46(1):31-38.[16]李晓艳,周敬雯,严铸云,等.基于转录组测序揭示适度干旱胁迫对丹参基因表达的调控[J].中草药,2020,51(6):1600-1608.[17]郭素平,袁燕,米马玉珍,等.干旱胁迫下登木油菜转录组分析[J].分子植物育种,2024,22(1):25-33.[18]赵文君,张赛,孙成振,等.北苍术对持续干旱的生理和转录组响应分析[J].核农学报,2024,38(1):46-56.[19]许小涵,唐志强,刘谦,等.干旱胁迫下忍冬全基因组DNA甲基化和转录组分析[J].中草药,2023,54(16):5339-5349.[20]祁伟亮,任迎虹,杨财容,等.干旱胁迫下桑树活性氧信号传导及转录组分析[J].干旱地区农业研究,2023,41(2):50-60.[21]李硕,李培英,孙宗玖,等.敏旱和抗旱狗牙根叶片对干旱胁迫的转录组响应差异分析[J].草地学报,2023,31(11):3322-3333.[22]BUCHNER P,BORISJUK L,WOBUS U.Glucan phosphorylases in Vicia faba L.:Cloning,structural analysis and expression patterns of cytosolic and plastidic forms in relation to starch[J].Planta,1996,199(1):64-73.[23]张华.AM真菌对小叶锦鸡儿和蒙古扁桃生长、抗旱性及总黄酮含量的影响[D].呼和浩特:内蒙古大学,2013.[24]ZHANG K,CUI H,CAO S,et al.Overexpression of CrCOMT from Carexrigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana[J].Plant Cell Reports,2019,38(12):1501-1514.[25]王爱华,马红叶,罗克明,等.火龙果响应PEG模拟干旱胁迫的转录组分析[J].果树学报,2022,39(7):1167-1182.[26]张保才,周奕华.植物细胞壁形成机制的新进展[J].中国科学:生命科学,2015,45(6):544-556.[27]BURTON R A,GIDLEY M J,FINCHER G B.Heterogeneity in the chemistry,structure and function of plant cell walls[J].Nature Chemical Biology,2010,6(10):724-732.[28]胡玉锋,金峰学,程云清,等.干旱胁迫下玉米苗期的转录组分析[J].东北农业科学,2022,47(6):48-52.

Memo

Memo:
-
Last Update: 2025-02-13