[1]张秋.土地利用方式转变对重金属在土壤中吸附特征和形态分布的影响研究[D].长沙:湖南大学,2019.[2]陈能场,郑煜基,何晓峰,等.《全国土壤污染状况调查公报》探析[J].农业环境科学学报,2017,36(9):1689-1692.[3]杨丽芝.金莲花幼苗对铜、镉胁迫的生理响应及其在镉胁迫下转录组学分析[D].哈尔滨:东北农业大学,2023.[4]HU Y,LIU X,BAI J,et al.Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization[J].Environmental Science and Pollution Research,2013,20(9):6150-6159.[5]刘萌萌.蚯蚓粪对土壤中Cd、As形态及小白菜吸收Cd、As的影响研究[D].泰安:山东农业大学,2016.[6]束胜,胡晓辉,王玉,等.蔬菜作物逆境生理与抗逆栽培研究进展[J].南京农业大学学报,2022,45(6):1087-1098.[7]张义,刘云利,刘子森,等.植物生长调节剂的研究及应用进展[J].水生生物学报,2021,45(3):700-708.[8]张海龙,陈迎迎,杨立新,等.γ-氨基丁酸对植物生长发育和抗逆性的调节作用[J].植物生理学报,2020,56(4):600-612.[9]冯丽丹,李捷,何静,等.喷施BABA调控枸杞活性氧代谢提高果实采后抗病能力[J].北方园艺,2023(13):112-120.[10]HAYAT F,KHAN U,LI J,et al.γaminobutyric acid (GABA):Akey player in alleviating abiotic stress resistance in horticultural crops:Current insights and future directions[J].Horticulturae,2023,9(6):647.[11]LI Y,LI Y,CUI Y,et al.GABA-mediated inhibition of cadmium uptake and accumulation in apples[J].Environmental Pollution,2022,300:118867.[12]WARISZ,NOREENZ,ALISHAHA,et al.Efficacy of γ-aminobutyric acid (GABA) on physio-biochemical attributes of lettuce (Lactuca sativa L.) under cadmium toxicity[J].Journal of Plant Growth Regulation,2023,42(8):5041-5057.[13]HUANG Y,LI B,CHEN H,et al.Gamma-aminobutyric acid enhances cadmium phytoextraction by Coreopsis grandiflora by remodeling the rhizospheric environment[J].Plants,2023,12(7):1484.[14]严勇.桃子防病治病验方[J].东方食疗与保健,2012(3):44-45,60.[15]蒋海月,刘佳棽,王尚德,等.几种常用的桃树砧木性状和抗性评价[J].北方园艺,2011(19):59-60.[16]林立金,廖明安.果园土壤重金属镉污染与植物修复[M].成都:四川大学出版社,2020.[17]汤民.果园土壤Pb、Cd污染及其原位钝化研究[D].重庆:西南大学,2012.[18]刘纳,高琴,钟攀,等.桃中铅镉含量对人体健康风险评价[J].农产品加工,2019,5(12):66-67,73.[19]王有年,关伟,邢彦峰,等.镉胁迫对‘丽春’桃幼苗镉积累及其根系生长的影响[J].园艺学报,2008,35(6):787-792.[20]熊庆娥.植物生理学实验教程[M].成都:四川科学技术出版社,2003.[21]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.[22]张杨杨,李希铭,高鹏,等.不同浓度镉胁迫下6种草本植物的耐性及富集特征的比较[J].草地学报,2021,29(6):1265-1276.[23]WANG X.Application of grey relation analysis theory to choose high reliability of the network node[J].Journal of Physics:Conference Series,2019,1237(3):032056.[24]翟夜雨,黄五星,袁岐山,等.植物镉毒害与硒对镉胁迫的缓解作用研究进展[J].河南农业大学学报,2023,57(3):372-382,392.[25]宋瑜,马艳华,唐希望,等.重金属镉(Cd)在植物体内转运途径研究进展[J].中国环境管理干部学院学报,2019,29(3):56-59.[26]蔡宇博,梁运江,张泊莹,等.γ-氨基丁酸(GABA)对盐胁迫下文冠果生理特性的影响[J].北方园艺,2022(19):53-60.[27]SEIFIKALHOR M,ALINIAEIFARD S,BERNARD F,et al.γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems[J].Scientific Reports,2020,10(1):3356.[28]王丽.多种叶面阻控剂缓解小白菜镉胁迫的效应研究[D].雅安:四川农业大学,2023.[29]熊敏先,吴迪,许向宁,等.土壤重金属镉对高等植物的毒性效应研究进展[J].生态毒理学报,2021,16(6):133-149.[30]ELRASAFIT,OUKARROUMA,HADDIOUIA,et al.Cadmium stress in plants:A critical review of the effects,mechanisms,and tolerance strategies[J].Critical Reviews in Environmental Science and Technology,2022,52(5):675-726.[31]WANG Y,CAO H,WANG S,et al.Exogenous γ-aminobutyric acid (GABA) improves salt-inhibited nitrogen metabolism and the anaplerotic reaction of the tricarboxylic acid cycle by regulating GABA-shunt metabolism in maize seedlings[J].Ecotoxicology and Environmental Safety,2023,254:114756.[32]徐梦琪.γ-氨基丁酸缓解油菜镉胁迫的生理机制研究[D].雅安:四川农业大学,2023.[33]李慧君,明荔莉,张文生.植物对镉吸收、转运及耐性调控机制研究进展[J].生态毒理学报,2022,17(2):86-95.[34]ZHAO Y,SONG X,ZHONG D B,et al.γ-aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp.QLY-1 under cadmium stress[J].Bioresource Technology,2020,297:122500.[35]张杨杨.外源γ-氨基丁酸(GABA)对镉胁迫下高羊茅生长及GABA支路代谢影响[D].北京:北京林业大学,2021.