|Table of Contents|

Effects of EBR and MT on the Photosynthetic Physiology of Lily Seedlings Under Salt Alkali Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年19
Page:
52-61
Research Field:
Publishing date:

Info

Title:
Effects of EBR and MT on the Photosynthetic Physiology of Lily Seedlings Under Salt Alkali Stress
Author(s):
LI Xuefen1TIAN Xuping2LI Wentao3
(1.Guang′an Vocational and Technical College,Guang′an,Sichuan 638000;2.Forestry College,Shanxi Agricultural University,Taigu,Shanxi 030801;3.College of Landscape Architecture,Shangqiu University,Shangqiu,Henan 476000)
Keywords:
24-epibrassinolidemelatonincomplex salt alkali stresslilyion balance
PACS:
S 644.1
DOI:
10.11937/bfyy.20241043
Abstract:
Taking lily bulbs from ‘Siberia’ as the test materials,an indoor potted experiment was conducted to investigate the effects of foliar application of 2,4-epibrassinolide (EBR),melatonin (MT),and their complex treatments on the growth,photosynthesis,chlorophyll fluorescence parameters,ion transport,and antioxidant system of lily seedlings under moderate salt alkali stress,in order to provide reference for both parties to alleviate lily salt alkali stress.The results showed that under salt alkali stress,the height,leaf surface area,and biomass of lilies significantly decreased.The application of EBR and/or MT could alleviate the growth inhibition of lilies.Under 150 mmol·L-1 saline alkali stress,compared with the control (CK) treated with water spray,the SPAD value of EBR+MT treatment increased by 37.2%,and the N content in the aboveground and underground parts of lilies increased by 83.6% and 40.7%,respectively.Among the chlorophyll fluorescence parameters,the maximum photochemical efficiency (Fv/Fm),potential activity (Fv/Fo),and photochemical quenching coefficient (qP) of PSⅡ increased by 14.6%,42.9%,and 50.0%,respectively,while the non photochemical quenching coefficient (NPQ) decreased by 9.2%,and the net photosynthetic rate (Pn) increased by 14.6%,42.9%,and 50.0%,respectively The transpiration rate (Tr) and stomatal conductance (Gs) increased by 56.3%,29.7%,and 42.7%,respectively,while intercellular carbon dioxide (Ci) decreased by 19.3%.Under 150 mmol·L-1 saline alkali stress,the Na+ content in the aboveground and underground parts of lilies increased,while the K+ content decreased.After EBR+MT treatment,the K+/Na+values in the aboveground and underground parts of lilies increased by 110.9% and 98.8%,respectively.The simultaneous application of EBR and/or MT treatment could promote the expression of Cu/Zn SOD,POD,and CAT genes in lilies,and activate the activities of antioxidant enzymes SOD,POD,and CAT.In conclusion,the application of EBR and/or MT treatments can increase the SPAD value of lilies to varying degrees,slow down the inhibition of salt alkali stress on the PSⅡ photosystem,maintain the balance of Na+ and K+ in the plant,activate the expression of antioxidant enzyme genes such as SOD,POD,and CAT,and increase enzyme activity,promoting the increase of lily plant height and biomass.Among them,the salt alkali resistance of lily seedlings was better under the combined application of EBR+MT treatment.

References:

[1]RAMOLIYA P J,PANDEY A N.Effect of salinization of soil on emergence,growth and survival of seedlings of Cordia rothii[J].Forest Ecology and Management,2003,176(1/3):185-194.[2]RAMANA G V,RAMAKRISHNA C,BEEBI S K,et al.Effect of soil salinization on plant growth and physiology of Plectranthus species[M].Waretown:Apple Academic Press,2017.[3]寇江涛,康文娟,苗阳阳,等.外源2,4-表油菜素内酯对NaCl胁迫下紫花苜蓿幼苗光合特性及离子吸收、运输和分配的影响[J].草业学报,2016,25(4):91-103.[4]王舒甜,王金平,张金池,等.油菜素内酯对盐胁迫下香樟幼苗叶片抗氧化酶活性的影响[J].浙江大学学报(农业与生命科学版),2017,43(4):476-482.[5]孙珊珊,安勐颍,韩烈保,等.外源2,4-表油菜素内酯对多年生黑麦草幼苗耐盐性的影响[J].草地学报,2014,22(5):1045-1050.[6]魏茜,何敏,胡小京.外源油菜素内酯对盐胁迫下紫罗兰幼苗生长及生理特性的影响[J].西南农业学报,2023,36(6):1165-1171.[7]WEEDA S,ZHANG N,ZHAO X,et al.Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems[J].PLoS One,2014,9(3):e93462.[8]SUN C,LIU L,WANG L,et al.Melatonin:A master regulator of plant development and stress responses[J].Journal of Integrative Plant Biology,2021,63(1):126-145.[9]王薇薇,沈峰,吴永成,等.褪黑素生物合成及其在植物逆境胁迫中的作用综述[J].江苏农业科学,2022,50(1):1-6.[10]吴鹏,吕剑,郁继华,等.褪黑素对盐碱复合胁迫下黄瓜幼苗光合特性和渗透调节物质含量的影响[J].应用生态学报,2022,33(7):1901-1910.[11]陈如男,任春元,李贺,等.外源褪黑素通过诱导SlRR基因表达调控番茄盐碱胁迫响应[J].北方园艺,2021(10):1-8.[12]张婷,徐捷,李名扬,等.4种野生百合对盐碱胁迫生理响应的初步研究[J].西南林业大学学报(自然科学版),2021,41(6):22-30.[13]杨雨华,鉴晶晶,邱小蝶,等.复合盐碱胁迫对OT百合生长和生理特性的影响[J].南京林业大学学报(自然科学版),2022,46(4):117-126.[14]白如意,宋希梅,沈健,等.叶面喷施褪黑素对低温胁迫下南瓜幼苗生长和生理特性的影响[J].西北植物学报,2023,43(5):805-813.[15]王学奎.植物生理生化实验原理和技术[M].2版.北京:高等教育出版社,2006.[16]黄尧瑶,邓明华,彭春秀,等.百合花瓣抗氧化酶系统对干旱胁迫响应的研究[J].园艺学报,2020,47(4):788-796.[17]KAHLOWN M A,AZAM M.Effect of saline drainage effluent on soil health and crop yield[J].Agricultural Water Management,2003,62(2):127-138.[18]孙玉芳,牛丽纯,宋福强.盐碱土修复方法的研究进展[J].世界生态学,2014(3):30-36.[19]MAEDA Y.Plant salt tolerance and removal of salt in saline soil by plants[J].Bulletin of the Society of Sea Water Science,Japan,2012,66(2):92-98.[20]雷新慧,万晨茜,陶金才,等.褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J].作物学报,2022,48(5):1210-1221.[21]王丹,刘亚西,周扬,等.油菜素内酯对盐胁迫下黑麦草种子萌发及幼苗生长的生理调控作用[J].草业科学,2021,38(6):1110-1118.[22]李平平,张永清,张萌,等.褪黑素浸种对混合盐碱胁迫下藜麦生长及生理的影响[J].江苏农业科学,2023,51(4):77-84.[23]王海珍,韩路,徐雅丽,等.胡杨异形叶光合系统Ⅱ叶绿素荧光特性[J].西北植物学报,2019,39(10):1795-1804.[24]孟凡娟,庞洪影,王建中,等.NaCl和Na2SO4胁迫下两种刺槐叶肉细胞叶绿体超微结构[J].生态学报,2011,31(3):734-741.[25]YU J C,LU J Z,CUI X Y,et al.Melatonin mediates reactive oxygen species homeostasis via SlCV to regulate leaf senescence in tomato plants[J].Journal of Pineal Research,2022,73(2):e12810.[26]ZHANG D,TAN W,YANG F,et al.A BIN2-GLK1 signaling module integrates brassinosteroid and light signaling to repress chloroplast development in the dark[J].Developmental Cell,2021,56(3):310-324.[27]尹赜鹏,王珍琪,齐明芳,等.外施褪黑素对盐胁迫下番茄幼苗光合功能的影响[J].生态学杂志,2019,38(2):467-475.[28]成铁龙,李焕勇,武海雯,等.盐胁迫下4种耐盐植物渗透调节物质积累的比较[J].林业科学研究,2015,28(6):826-832.[29]张丽,牛雪飞,郭栋,等.盐胁迫下草麻黄电阻抗图谱参数的变化及离子平衡机制[J].核农学报,2019,33(6):1208-1216.[30]高青海,郭远远,吴燕,等.盐胁迫下外源褪黑素和Ca2+对甜瓜幼苗的缓解效应[J].应用生态学报,2017,28(6):1925-1931.[31]王文静,麻冬梅,赵丽娟,等.2,4-表油菜素内酯对盐胁迫下紫花苜蓿生理指标及根系离子积累的影响[J].草地学报,2021,29(6):1363-1368.[32]朱秀红,王美红,孙喜营,等.‘泡桐1201’幼苗对钠盐胁迫的生理响应[J].西北农业学报,2019,28(4):641-648.[33]高子奇,汤宇晨,郑琳琳,等.异源过表达NtCIPK5提高转基因拟南芥对盐和干旱胁迫的耐受性[J].植物生理学报,2023,59(12):2320-2332.

Memo

Memo:
-
Last Update: 2024-10-21