|Table of Contents|

Adaptation of Seed Germination and Seedling Growth of Brassica oleracea L.var.capitata L. to Different Concentrations of Cd

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年19
Page:
9-16
Research Field:
Publishing date:

Info

Title:
Adaptation of Seed Germination and Seedling Growth of Brassica oleracea L.var.capitata L. to Different Concentrations of Cd
Author(s):
PEI Yunxia12NI Tianhong3ZHANG Wenjun3ZHANG Qiang12
(1.Eco-environmental Damage Judicial Expertise Center,Hubei Provincial Academy of Eco-environmental Sciences,Wuhan,Hubei 430072;2.Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control,Wuhan,Hubei 430072;3.College of Horticulture,Xinyang Agriculture and Forestry University,Xinyang,Henan 464000)
Keywords:
Brassica oleracea L.var.capitata L.Cdseed germinationseedling growthosmotic adjustment substances
PACS:
S 635.1
DOI:
10.11937/bfyy.20240877
Abstract:
Taking seeds of Brassica oleracea L.var.capitata L.as the test material under different levels of Cd stress (0,25,50,100,200 mg·L-1 and 400 mg·L-1).The effects of different Cd concentrations on seed germination characteristics,seedling shoot and root elongation,biomass,chlorophyll content,leaf malondialdehyde content,leaf relative conductivity,leaf osmoregulatory substances content (soluble sugars and soluble proteins),and root vigor of Brassica oleracea L.var.capitata L.were investigated in a potting contamination simulation experiment,in order to provide reference for the breeding of Brassica oleracea L.var.capitata L.and identification of plant damage due to soil Cd contamination.The results showed that,1) high concentration (>100 mg·L-1) of Cd stress significantly reduced the germination rate,germination potential,germination index and vigor index of Brassica oleracea L.var.capitata L. seeds,while low concentration (<100 mg·L-1) of Cd stress did not significantly affect germination potential and germination rate,but resulted in a decrease in germination index and vigor index.2) Different concentrations of Cd stress inhibited shoot and root elongation,root vigor,and chlorophyll content accumulation in Brassica oleracea L.var.capitata L. seedlings,while biomass,soluble sugar,and soluble protein content showed inhibition only under Cd stress higher than 100 mg·L-1.In addition,Cd stress higher than 100 mg·L-1 also led to a significant increase in the relative conductivity of leaf blades of Brassica oleracea L.var.capitata L. seedlings.However,none of the different concentrations of Cd stress significantly affected malondialdehyde content and root-crown ratio.In summary,seed germination and seedling growth of Brassica oleracea L.var.capitata L. were tolerant to Cd stress below 100 mg·L-1,while Cd concentration higher than 100 mg·L-1 inhibited seed germination and seedling growth of Brassica oleracea L.var.capitata L. to a greater extent.

References:

[1]俞诗音,潘淑桢,唐敏,等.‘光谱’月季对Cd、Zn的富集特征和耐性机制[J].农业环境科学学报,2024,43(1):48-59.[2]朱红霞,赵红艳,陈丽丽,等.铅镉胁迫下马齿苋的种子萌发和幼苗生理响应[J].西南林业大学学报(自然科学),2020,40(3):76-81.[3]XU S,CHEN A,WANG Y,et al.Effects of blast furnace slag on the immobilization,plant uptake and translocation of Cd in a contaminated paddy soil[J].Environment International,2023,179:108162.[4]ZHANG S,LAI M,GAO Z,et al.An ICT-based ratiometric fluorescent probe for tracking and imaging SO2 during Cd-induced stress in plants[J].Sensors and Actuators B:Chemical,2023,395:134499.[5]LV F,SHAN Q,QIAO K,et al.Populus euphratica plant cadmium resistance 2 mediates Cd tolerance by root efflux of Cd ions in poplar[J].Plant Cell Reports,2023,42(11):1777-1789.[6]梁晓宁,梁爽,梁宇鹏,等.外源钙对镉胁迫下荻种子萌发和幼苗生长的影响[J].生态学杂志,2024,43(7):2018-2025.[7]张德林,陈云子,陈蓉,等.外源Cd对川芎苓种萌发及幼苗生长的影响[J].天然产物研究与开发,2024,36(5):838-846.[8]赵国华,陈炳禄,张云霓.Cd对蔬菜生物量和主要矿质元素吸收量的影响[J].土壤通报,2014,45(3):722-727.[9]刘传娟.不同种类蔬菜幼苗对镉(Cd)的敏感性研究[D].北京:中国农业科学院,2009.[10]赵晓改,王浩,高杉,等.土壤Pb、Cd污染对5种植物生理指标和修复能力影响的研究[J].河南师范大学学报(自然科学版),2014,42(6):86-90.[11]孙建云.甘蓝(Brassica oleracea L.)耐镉性的品种差异及其机理研究[D].南京:南京农业大学,2014.[12]李亚莉,马瑞,马彦军,等.盐旱胁迫对盐爪爪种子萌发及幼苗生长的影响[J].草地学报,2023,31(12):3715-3723.[13]罗丽萍,刘星星,殷勤,等.利用近红外技术检测芸薹属种子活力[J].南昌大学学报(理科版),2017,41(1):66-71.[14]王波,黄攀,吕德雅,等.铅、镉对南荻种子萌发和幼苗生长的影响[J].生态环境学报,2018,27(9):1768-1773.[15]倪天虹.转录因子PtMYB194调控杨树对水分胁迫抗性的功能研究[D].武汉:华中农业大学,2021.[16]王学奎,黄见良.植物生理生化实验原理与技术[M].3版.北京:高等教育出版社,2015.[17]张秀君,孙钱钱,乔双,等.菠菜叶绿素提取方法的比较研究[J].作物杂志,2011(3):57-60.[18]闫磊,赵彦坤,朱辉,等.盐、旱胁迫下霸王种子萌发和幼苗生理特性[J].草业科学,2023,40(6):1559-1567.[19]陈俊任,柳丹,吴家森,等.重金属胁迫对毛竹种子萌发及其富集效应的影响[J].生态学报,2014,34(22):6501-6509.[20]刘翰升,赵春莉,刘玥,等.Cd胁迫对波斯菊种子萌发、幼苗耐性及富集的影响[J].河南农业科学,2020,49(5):126-133.[21]张天,范明慧,田胜尼,等.重金属铜、镉对三种十字花科植物种子萌发的影响[J].信阳农林学院学报,2021,31(3):92-99.[22]吴让啸,朱珠,常耀,等.镉胁迫对6种菊科花卉种子萌发及幼苗生长的影响[J].分子植物育种,2020,18(19):6483-6490.[23]李虹颖,苏彦华.钾镉双重处理对籽粒苋幼苗生长及元素积累的影响[J].植物资源与环境学报,2013,22(1):36-42.[24]郭琳琳,王晶晶,俎敬美,等.微塑料对碱胁迫下菠菜种子萌发和幼苗生理特征的影响[J].应用生态学报,2023,34(9):2536-2544.[25]景俏丽.紫花苜蓿对土壤Cd、Pb重金属污染的修复研究[D].西安:长安大学,2019.[26]张泽锟,张辰阳,汪洋,等.不同质量分数生长素对Cd胁迫的香樟幼苗生理生化特性的影响[J].东北林业大学学报,2023,51(5):41-47.[27]史雅甜.Cd、Pb及其复合污染胁迫对羊蹄生长和生理特性的影响[D].南昌:江西师范大学,2017.[28]卢扬章.格木对镉胁迫的生理响应及抗性研究[D].南宁:广西大学,2018.[29]胡樱.Cd胁迫下三种高寒牧草的生长变化及生理响应[D].西宁:青海师范大学,2023.[30]张衡锋,杨绮,韦庆翠,等.盐胁迫对10个品种紫薇的影响及其耐盐性综合评价[J].东北林业大学学报,2023,51(9):34-40.[31]裴云霞,曹健,杜克兵,等.贮藏温度对枫香种子耐贮性的影响[J].林业科学研究,2020,33(5):55-60.[32]林琳,旦增卓嘎,吴玲玲.铅、镉单一及复合胁迫对生菜幼苗抗氧化酶及亚细胞结构的毒性效应[J].生态毒理学报,2022,17(2):337-348.[33]康育鑫,廖水兰,兰婕,等.镉胁迫对不同叶用莴苣品种生长及生理特性的影响[J].江苏农业科学,2021,49(7):149-154.[34]熊超明,杨婉莹,王文晓,等.不同盐碱胁迫对草莓生长与生理的影响[J].北方园艺,2023(11):38-44.[35]王启.镉污染对小青菜生理生化特性的影响及生物炭阻控研究[D].延安:延安大学,2022.[36]周蛟,潘远智,赵胤,等.黄果龙葵幼苗对镉胁迫的生理生长响应[J].广西植物,2022,42(4):628-638.[37]韦献东.Pb-Cd胁迫对枫香幼苗生长和生理特性的影响[D].南宁:广西大学,2020.[38]柴文臣,阎世江.干旱胁迫对嫁接黄瓜幼苗生长发育及生理指标的影响[J].北方园艺,2024(7):10-17.[39]姜虎生,胡春霞,安宁.Cd2+对高粱幼苗生理指标的影响[J].吉林农业科学,2010,35(4):6-8.[40]李高钰.Cd、Pb单一及复合污染对银杏幼苗生长及银杏黄酮含量的影响[D].雅安:四川农业大学,2019.

Memo

Memo:
-
Last Update: 2024-10-18