|Table of Contents|

Effects of Intercropping Belamcanda chinensis on the Structure and Function of Soil Bacterial Community in Poplar Forest Land

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年19
Page:
81-89
Research Field:
Publishing date:

Info

Title:
Effects of Intercropping Belamcanda chinensis on the Structure and Function of Soil Bacterial Community in Poplar Forest Land
Author(s):
WANG ShiqiLI RenpingSONG LizhiPAN ChengliangYANG ZhiyanLIANG Dejun
(Liaoning Institute of Poplar Research,Gaizhou,Liaoning 115213)
Keywords:
poplarBelamcanda chinensishigh throughput sequencingbacterial structure
PACS:
S 714.3
DOI:
10.11937/bfyy.20240779
Abstract:
Taking poplar monoculture soil,Poplar-Belamcanda chinens isintercropping system edge soil and centre soil samples as test materials,and high-throughput sequencing method was used,the effects of intercropping with Belamcanda chinensis on the composition and function of soil bacterial community in poplar woodland were studied,in order to provide reference for screening the suitable distance for planting Belamcanda chinensis under poplar forests.The results showed that,there was no significant difference in the richness index (Chao1 and ACE) and diversity index (Shannon and Simpson) of soil bacterial communities between intercropping and monoculture modes.Proteobacteria and Acidobacteriota were the dominant bacterial phyla in soil bacterial communities under different treatments,while Sphingomonas was the dominant bacterial genus.Intercropping increased the relative abundance of soil bacterial communities in the phyla Gemmatimonadota and Chloroflexi,while the abundance of Gemmatimonas and Sphingomonas in group B soil increased.According to LEfSe analysis,there were four bacterial groups in Group B soil that were significantly higher (LDA>4),included Proteobacteria at the phylum level,AlphaProteobacteria and Saccharimonadia at the class level and Rhodanobacteraceae genus at the family level.Further PICRUSt2 functional prediction showed that intercropping increased the relative abundance of carbon metabolism and pyruvate metabolism functions.In summary,intercropping between poplar and Belamcanda chinensis could help improve soil structure,enhance soil metabolic activity,and it is advisable to leave a certain distance from poplar trees when planting Belamcanda chinensis.

References:

[1]陈银华.射干化学成分芒果苷的分离鉴定及药材高效液相指纹图谱的研究[D].武汉:湖北中医学院,2007.[2]SZANDRUK M,MERWID-LAD A,SZELAG A.The impact of mangiferin from Belamcanda chinensis on experimental colitis in rats[J].Inflammopharmacology,2018,26(2):571-581.[3]SHI J,LV H,TANG C,et al.Mangiferin inhibits cell migration and angiogenesis via PI3K/AKT/mTOR signaling in high glucose-and hypoxia-induced RRCECs[J].Molecular Medicine Reports,2021,23(6):473.[4]NOH D,CHOI J G,HUH E,et al.Tectorigenin,a flavonoid-based compound of leopard lily rhizome,attenuates UV-B-induced apoptosis and collagen degradation by inhibiting oxidative stress in human keratinocytes[J].Nutrients,2018,10(12):1998.[5]HA D T,BINH B T,THU N T,et al.Four new compounds isolated from the aerial part of Belamcanda chinensis (L.) and their effect on vascular smooth muscle cell (VSMC) proliferation[J].Chemical & Pharmaceutical Bulletin,2019,67(1):41-46.[6]许俊萍,李江,王磊,等.普洱市林下经济发展研究[J].林业调查规划,2016,41(1):120-124.[7]韦宏禧.射干繁育技术及林下引种栽培研究[D].邯郸:河北工程大学,2022.[8]李巧玲,肖忠,任明波,等.间作不同作物对栀子根际土壤微生态的影响[J].微生物学通报,2021,48(10):3588-3602.[9]BOLGER A M,LOHSE M,USADEL B.Trimmomatic:A flexible trimmer for Illumina sequence data[J].Bioinformatics,2014,30(15):2114-2120.[10]MARTIN M.Cutadapt removes adapter sequences from high-throughput sequencing reads[J].EMBnet Journal,2011,17(1):10.[11]EDGAR R C.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.[12]EDGAR R C,HAAS B J,CLEMENTE J C,et al.UCHIME improves sensitivity and speed of chimera detection[J].Bioinformatics,2011,27(16):2194-2200.[13]SEGATA N,IZARD J,WALDRON L,et al.Metagenomic biomarker discovery and explanation[J].Genome Biology,2011,12(6):R60.[14]王新宇,高英志.禾本科/豆科间作促进豆科共生固氮机理研究进展[J].科学通报,2020,65(S1):142-149.[15]李显刚,班镁光,周泽英,等.土壤微生物生态学在农业中的应用研究综述[J].中国土壤与肥料,2015(2):5-11.[16]李青山,王梦姣,刘洁然.不同时期油菜根际土壤微生物群落结构多样性及其差异[J].北方园艺,2023(24):72-80.[17]姜琴芳,伏云珍,李倩,等.间作作物种间相互作用对土壤细菌群落的影响[J].西北农业学报,2024,33(3):542-551.[18]林伟伟,李娜,陈丽珊,等.玉米与大豆种间互作对根际细菌群落结构及多样性的影响[J].中国生态农业学报(中英文),2022,30(1):26-37.[19]伏云珍,马琨,崔慧珍,等.间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J].生态学杂志,2021,40(1):131-139.[20]陈时鑫,张伟,马丹炜,等.高寒条件下根际环境对极小种群大理白前竞争能力的影响[J].生态学报,2023,43(6):2555-2567.[21]汪堃,南丽丽,师尚礼,等.干旱胁迫对不同根型苜蓿根系生长及根际土壤细菌的影响[J].生态学报,2021,41(19):7735-7742.[22]JANSSEN P H.Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J].Applied and Environmental Microbiology,2006,72(3):1719-1728.[23]BARBERáN A,BATES S T,CASAMAYOR E O,et al.Using network analysis to explore co-occurrence patterns in soil microbial communities[J].The ISME Journal,2012,6(2):343-351.[24]顾嘉诚,王文敏,王振,等.玉米/大豆间作对根际土壤磷素生物有效性和微生物群落结构的影响[J].应用生态学报,2023,34(11):3030-3038.[25]刘奎,葛壮,徐英德,等.不同耕作方式下黑土微生物群落对干湿交替的响应[J].土壤学报,2020,57(1):206-216.[26]姜照,杜金华,孙文涛,等.发酵温度对发酵玉米醪中总酸及主要微生物的影响[J].食品与发酵工业,2011,37(6):87-91.

Memo

Memo:
-
Last Update: 2024-10-21