|Table of Contents|

Effects of Water and Nitrogen Interaction on the Growth,Development,Yield,and Quality of Potted Tomatoes

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年9
Page:
18-23
Research Field:
Publishing date:

Info

Title:
Effects of Water and Nitrogen Interaction on the Growth,Development,Yield,and Quality of Potted Tomatoes
Author(s):
FEI Cong12XU Gang1
(1.Vegetable Research Institute,Jiangsu Academy of Agricultural Sciences,Nanjing,Jiangsu 210014;2.Department of Life Sciences,Yuncheng College,Yuncheng,Shanxi 044000)
Keywords:
tomatogrowth dynamicsyieldquality
PACS:
S 641.2
DOI:
10.11937/bfyy.20233979
Abstract:
Taking tomato ‘micro tom’ as the experimental material,a pot controlled experimental method was adopted.Two irrigation amounts of 300 and 450 mL·pot-1 (N0)were set each time,denoted as W300 and W450,with four different nitrogen application levels of 0 g·kg-1 (N0),0.08 g·kg-1 (N1),0.16 g·kg-1 (N2),and 0.32 g·kg-1 (N3).Two growth stage experiments were conducted.The chlorophyll content,growth and development dynamics,yield,and quality of potted tomato leaves were used as research indicators,in order to obtain the dynamic distribution pattern of assimilates during tomato growth stage and provide reference for rational water and nitrogen management in tomato production.The results showed that the growth and development of tomatoes followed a logistic curve.In the two quarters of the experiment,the highest yield occurred under the W450N2 treatment,reaching 195.24 g and 201.23 g,respectively,which were 1.62%-50.47% and 1.91%-52.69% higher than other treatments.Reasonable water and nitrogen management can maintain the maximum accumulation rate of above-ground dry matter for a long time,ultimately improving tomato yield.

References:

[1]石小虎,蔡焕杰.基于叶片SPAD估算不同水氮处理下温室番茄氮营养指数[J].农业工程学报,2018,34(17):116-126.[2]LI Y K,WANG L C,XUE X Z,et al.Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain[J].Agricultural Water Management,2017,184:1-8.[3]LYU H F,LIN S,WANG Y F,et al.Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J].Environmental Pollution,2019,245:694-701.[4]DU Y D,NIU W Q,GU X B,et al.Water-and nitrogen-saving potentials in tomato production:A meta-analysis[J].Agricultural Water Management,2018,210:296-303.[5]王如珂,郭相平,曹克文,等.秸秆隔层及水氮管理对番茄光合特性、产量品质和水氮利用的影响[J].江苏农业科学,2022,50(5):128-134.[6]罗慧,李伏生.番茄滴灌水氮耦合效应与模式研究[J].中国农学通报,2022,38(3):30-36.[7]吴昕怡,胡晓辉,屈锋,等.不同氮肥处理对春季大棚番茄产量及肥料利用率的影响[J].北方园艺,2018(17):12-18.[8]曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007.[9]POLLASTRINI M,HOLLAND V,BRGGEMANN W,et al.Taxonomic and ecological relevance of the chlorophyll a,fluorescence signature of tree species in mixed European forests[J].The New Phytologist,2016,212(1):51-65.[10]石嘉琦,刘宇庆,王艳玲,等.设施黄瓜产量及叶片光合特性对施氮量的响应[J].北方园艺,2022(6):51-59.[11]MORIWAKI T,FALCIONI R,TANAKA F A O,et al.Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density,enhancing green light absorption[J].Plant Science,2019,278:1-11.[12]LAUFER D,NIELSEN O,WILTING P,et al.Yield and nitrogen use efficiency of fodder and sugar beet (Beta vulgaris L.) in contrasting environments of northwestern Europe[J].European Journal of Agronomy,2016,73:124-132.[13]文明,李明华,蒋家乐,等.氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响[J].中国农业科学,2021,54(16):3473-3487.[14]王雪蓉,张润芝,李淑敏,等.不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟[J].中国生态农业学报,2019,27(9):1354-1363.[15]尚永盼,于爱忠,王玉珑,等.绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J].作物学报,2024,50(3):686-694.[16]李欢欢,刘浩,庞婕,等.水氮互作对盆栽番茄生长发育和养分累积的影响[J].农业机械学报,2019,50(9):272-279.[17]尹志荣,柯英,蔡进军.水肥耦合对设施番茄土壤水分、养分运移及产量和水分利用效率影响[J].灌溉排水学报,2023,42(6):33-44.[18]李宣志,张金珠,王振华,等.水-肥-盐耦合对滴灌加工番茄生长和产量的影响[J].干旱地区农业研究,2023,41(4):133-140.[19]徐大兵,焦忠久,佀国涵,等.氮肥优化对高山避雨栽培番茄产量和养分利用率的影响[J].北方园艺,2022(5):41-46.

Memo

Memo:
-
Last Update: 2024-05-21