|Table of Contents|

Alleviating Effect of Exogenous Melatonin on Phaseolus vulgaris Seedlings Under Alkali Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年7
Page:
17-26
Research Field:
Publishing date:

Info

Title:
Alleviating Effect of Exogenous Melatonin on Phaseolus vulgaris Seedlings Under Alkali Stress
Author(s):
SHI ZhenxiSU YiYANG XiaoxuLIU DajunLIU ChangFENG Guojun
(School of Modern Agriculture and Ecological Environment,Heilongiiang University,Harbin,Heilongiang 150000)
Keywords:
Phaseolus vulgaris L.alkali stressmelatoninseedling
PACS:
S 643.1
DOI:
10.11937/bfyy.20233956
Abstract:
The effects of exogenous melatonin on the growth and alkaline tolerance of kidney bean seedlings under alkaline stress were studied by using the nutrient solution hydroponic method with the alkali-tolerant variety ‘Fenguan’ and the relatively alkaline-sensitive variety ‘1-4-3-1-1’ as the experimental materials.Four treatments were set up control (CK),exogenous 0.1 μmol·L-1 melatonin (MT),60 mmol·L-1 NaHCO3 solution alkaline stress (S),and melatonin addition under alkaline stress (S+MT),in order to provide reference for improving the alkaline tolerance of kidney bean in saline-alkaline areas.The results showed that melatonin could reduce the damage of alkali stress on the biofilm of kidney bean seedlings,increase biomass,SOD activity and soluble protein content,increase proline and soluble sugar content in leaves and POD activity in roots.The physiological responses of the two bean varieties to alkali stress were different.The alkali tolerance of ‘Fenguan’ was stronger.Melatonin could effectively alleviate the damage of alkali stress to bean seedlings,and the relief effect on the relatively alkali-sensitive variety ‘1-4-3-1-1’ was better.

References:

[1]杨劲松,姚荣江,王相平,等.中国盐渍土研究:历程、现状与展望[J].土壤学报,2022,59(1):10-27.[2]PANTA S,FLOWERS T,LANE P,et al.Halophyte agriculture:Success stories[J].Environmental and Experimental Botany,2014,107:71-83.[3]ZHANG J,WANG J,JIANG W,et al.Identification and analysis of NaHCO3 stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq[J].Frontiers in Plant Science,2016(7):1842.[4]SHI D,WANG D.Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag[J].Plant and Soil,2005,271(1):15-26.[5]SHI D,SHENG Y.Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors[J].Environmental and Experimental Botany,2005,54(1):8-21.[6]WANG H,AHAN J,WU Z,et al.Alteration of nitrogen metabolism in rice variety ‘Nipponbare’ induced by alkali stress[J].Plant and Soil,2012,355(1):131-147.[7]李彬,王志春,孙志高,等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):154-158.[8]APEL K,HIRT H.Reactive oxygen species:Metabolism,oxidative stress,and signal transduction[J].Annual Review of Plant Biology,2004,55:373-399.[9]MUNNS R,TESTER M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59:651-681.[10]LIU N,JIN Z,WANG S,et al.Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato[J].Scientia Horticulturae,2015,181:18-25.[11]MUNNS R.Genes and salt tolerance:Bringing them together[J].The New Phytologist,2005,167(3):645-663.[12]MUNNS R,JAMES R A,GILLIHAM M,et al.Tissue tolerance:An essential but elusive trait for salt-tolerant crops[J].Functional Plant Biology:FPB,2016,43(12):1103-1113.[13]LERNER A B,CASE J D,TAKAHASHI Y.Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands[J].Journal of Biological Chemistry,1960,235(7):1992-1997.[14]HERNNDEZ-RUIZ J,CANO A,ARNAO M B.Melatonin:A growth-stimulating compound present in lupin tissues[J].Planta,2004,220(1):140-144.[15]ARNAO M B,HERNNDEZ-RUIZ J.The physiological function of melatonin in plants[J].Plant Signaling & Behavior,2006,1(3):89-95.[16]王蕊,杨小龙,须晖,等.高等植物褪黑素的合成和代谢研究进展[J].植物生理学报,2016,52(5):615-627.[17]陈如男,任春元,李贺,等.外源褪黑素通过诱导SlRR基因表达调控番茄盐碱胁迫响应[J].北方园艺,2021(10):1-8.[18]WEI W,LI Q T,CHU Y N,et al.Melatonin enhances plant growth and abiotic stress tolerance in soybean plants[J].Journal of Experimental Botany,2015,66(3):695-707.[19]越世杰,许长成.植物组织中丙二醛测定方法的改进[J].植物生理学报,1994(3):207-210.[20]WINTERBOURN C C,HAWKINS R E,BRIAN M,et al.The estimation of red cell superoxide dismutase activity[J].The Journal of Laboratory & Clinical Medicine,1975,85(2):337-341.[21]RAO M V,PALIYATH G,ORMROD D P.Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J].Plant Physiology,1996,110(1):125-136.[22]DYSON M R.Selection of soluble protein expression constructs:The experimental determination of protein domain boundaries[J].Biochemical Society Transactions,2010,38(4):908-913.[23]刘海英,王华华,崔长海,等.可溶性糖含量测定(蒽酮法)实验的改进[J].实验室科学,2013,16(2):19-20.[24]TRUZZI C,ANNIBALDI A,ILLUMINATI S,et al.Determination of proline in honey:Comparison between official methods,optimization and validation of the analytical methodology[J].Food Chemistry,2014,150:477-481.[25]许基磊.三种外源添加剂对野大豆盐胁迫损伤的缓解效应及机理研究[D].扬州:扬州大学,2020.[26]刘月,寇从贤,付桂萍,等.褪黑素对大豆幼苗盐害的缓解效应及机理研究[J].中国油料作物学报,2017,39(6):813-819.[27]陈冠宜,周美利,孟国花,等.NaCl和Na2CO3对盐地碱蓬和小花碱茅幼苗生长的比较研究[J].现代农业科技,2010(22):260-262.[28]WU Z H,YANG C W,YANG M Y.Photosynthesis,photosystem II efficiency,amino acid metabolism and ion distribution in rice (Oryza sativa L.) in response to alkaline stress[J].Photosynthetica,2014,52(1):157-160.[29]LI C,SUN X,CHANG C,et al.Dopamine alleviates salt-induced stress in Malus hupehensis[J].Physiologia Plantarum,2015,153(4):584-602.[30]蒋希瑶,黄俊杰,周英杰,等.不同浓度外源褪黑素对NaHCO3胁迫下番茄幼苗生长和生理指标的影响[J].北方园艺,2022(9):1-9.[31]邹京南.外源褪黑素对干旱胁迫下大豆光合及生长的影响[D].大庆:黑龙江八一农垦大学,2019.[32]郭玉双,李祥羽,任学良.植物体内活性氧(ROS)的产生及其作用研究进展[J].黑龙江农业科学,2011(8):146-148.[33]ZHANG N,SUN Q,ZHANG H,et al.Roles of melatonin in abiotic stress resistance in plants[J].Journal of Experimental Botany,2015,66(3):647-656.[34]宋吉轩.干旱胁迫下植物生长调节剂对羊草生长及生理特性的影响与转录组分析[D].重庆:西南大学,2017.[35]SERRANO R,RODRIGUEZ-NAVARRO A.Ion homeostasis during salt stress in plants[J].Current Opinion in Cell Biology,2001,13(4):399-404.[36]ZHU J K.Plant salt tolerance[J].Trends in Plant Science,2001,6(2):66-71.[37]陈莉.盐胁迫下外源褪黑素促进棉花种子萌发的生理及分子机制[D].保定:河北农业大学,2020.[38]陈洁.外源褪黑素对干旱胁迫下紫花苜蓿生长和生理性状的影响[D].南京:南京农业大学,2019.[39]王云梅,夏惠,周桂虹,等.外源褪黑素和脱落酸对干旱胁迫下葡萄生理特性的影响[J].干旱地区农业研究,2020,38(3):105-111.[40]周小婷.外源褪黑素对盐胁迫下生菜和番茄幼苗的光合作用调控机制[D].杨凌:西北农林科技大学,2017.

Memo

Memo:
-
Last Update: 2024-05-08