|Table of Contents|

Response of Water-soluble Substances in Saline-alkali Wetland

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年7
Page:
67-74
Research Field:
Publishing date:

Info

Title:
Response of Water-soluble Substances in Saline-alkali Wetland
Author(s):
TIAN YuxinJIANG ShanXIE YuxinZHOU YuqianLIU Qian
(School of Landseape Architecture,Changchun University,Changchun,Jilin 130022)
Keywords:
reed wetlandfreeze and melt interferencefluorescence spectrumwater-soluble organic carbon
PACS:
S 153
DOI:
10.11937/bfyy.20233564
Abstract:
The soil of Chagan Lake wetland in the saline alkali area of Songnen Plain was used as the research material,and the simulation freeze-thaw culture method was used to study the effects of different freeze-thaw temperatures and freeze-thaw cycles on the changes in soil water-soluble organic carbon (WSOC) content and the fluorescence characteristics of water-soluble substances,in order to reveal the response of water-soluble substances in saline alkali wetland soil to freeze-thaw cycles and freeze-thaw temperatures,provide reference for evaluating soil fertility,rational utilization of resources and remediation of soil environment.The results showed that the soil WSOC content in the 0-20 cm soil layer of the wetland was higher than that in the 20-40 cm soil layer.Freezing and thawing interference had a significant impact on the content of water-soluble organic carbon in soil.As the number of freeze-thaw cycles increased,the content of water-soluble organic carbon in soil showed an increasing trend.The interaction between freeze-thaw temperature and the number of freeze-thaw cycles affected the variation of soil water-soluble carbon content.The soil WSOC of different freeze-thaw treatments was composed of humic acid like substances,with the highest content of humic acid found in samples at -25-5 ℃ freeze-thaw temperatures.The freeze-thaw treatment affected the fluorescence intensity of soil water-soluble substances,but did not affect the structural changes of soil water-soluble substances.

References:

[1]郑昕雨,陈鹏,韩金吉,等.冻融循环对土壤团聚体与微生物特性影响研究进展[J].江苏农业学报,2023,39(4):1080-1088.[2]ZHAO R F,ZHANG S N,GAO W,et al.Factors effecting the freeze thaw process in soils and reduction in damage due to frosting with reinforcement:A review[J].Bulletin of Engineering Geology and the Environment,2019,78(7):5001-5010.[3]ROWLANDSON T L,BERG A A,ROY A,et al.Capturing agricultural soil freeze/thaw state through remote sensing and ground observations:A soil freeze/thaw validation campaign[J].Remote Sensing of Environment,2018,211:59-70.[4]郭敏,罗林,梁进,等.冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J].植物生态学报,2023,47(6):882-894.[5]PEREZ-MON C,FREY B,FROSSARD A.Functional and structural responses of arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of different frequencies[J].Frontiers in Microbiology,2020(11):982.[6]LEUTHER F,SCHLTER S.Impact of freeze-thaw cycles on soil structure and soil hydraulic properties[J].Soil,2021,7(1):179-191.[7]XIAO L,YAO K H,LI P,et al.Effects of freeze-thaw cycles and initial soil moisture content on soil aggregate stability in natural grassland and Chinese pine forest on the Loess Plateau of China[J].Journal of Soils and Sediments,2020,20(3):1222-1230.[8]WANG L,WANG H F,TIAN Z C,et al.Structural changes of compacted soil layers in Northeast China due to freezing-thawing processes[J].Sustainability,2020,12(4):1587.[9]MA Q H,ZHANG K L,JABRO J D,et al.Freeze-thaw cycles effects on soil physical properties under different degraded conditions in Northeast China[J].Environmental Earth Sciences,2019,78(10):321.[10]吴芹芹,莫淑红,程圣东,等.黄土区冻融期不同土地利用土壤水分与温度的关系[J].干旱区研究,2020,37(3):627-635.[11]SANG C P,XIA Z W,SUN L F.et al.Responses of soil microbial communities to freeze-thaw cycles in a Chinese temperate forest[J].Ecological Processes,2021,10(1):66.[12]魏培洁,刘放,吴明辉,等.疏勒河源多年冻土区土壤水溶性有机碳变化特征[J].草业科学,2021,38(4):605-617.[13]赵淑芳,胡尧.黄河流域不同湿地生态系统土壤呼吸和碳储量[J].北方园艺,2021(16):94-101.[14]张蛟,崔士友,陈澎军,等.沿海滩涂水稻种植对土壤微生物量碳和水溶性有机碳的影响[J].江苏农业科学,2022,50(17):222-228.[15]孟和那仁,包翔,王明玖.不同治理措施对盐碱土团聚体组成和碳氮的影响[J].北方园艺,2021(12):88-93.[16]庄桂文,贾志国.浅谈查干湖湿地的保护措施[J].吉林水利,2005(4):6-7.[17]徐子棋,许晓鸿.松嫩平原苏打盐碱地成因、特点及治理措施研究进展[J].中国水土保持,2018(2):54-59,69.[18]艾军,李梁,姜虹.查干湖湿地的环境变化与保护[J].东北水利水电,2008,26(7):61-63,72.[19]马连刚,肖保华.土壤腐殖质提取和分组综述[J].矿物岩石地球化学通报,2011,30(4):465-471.[20]黄翔,杜雷,洪娟,等.重铬酸钾外加热法和ASI法测土壤有机质相关性研究[J].湖北农业科学,2020,59(15):122-125.[21]林绍霞,肖致强,张转铃,等.贵州草海水体溶解性有机物的荧光光谱特征及来源解析[J].中国环境科学,2021,41(3):1325-1335.[22]张紫薇,周石磊,张甜娜,等.岗南水库沉积物溶解性有机物光谱时空分布特征及环境意义[J].环境科学学报,2021,41(9):3598-3611.[23]张新月.水耕熟化年限对寒地不同母土水稻土有机碳组分及腐殖质的影响[D].大庆:黑龙江八一农垦大学,2023.[24]王书航,王雯雯,姜霞,等.基于三维荧光光谱-平行因子分析技术的蠡湖CDOM分布特征[J].中国环境科学,2016,36(2):517-524.[25]李亚男,武俊男,高云航,等.不同土地利用方式对苏打盐碱土水溶性有机物荧光特性的影响[J].吉林大学学报(理学版),2017,55(3):733-738.[26]刘丽贞,黄琪,吴永明,等.鄱阳湖CDOM三维荧光光谱的平行因子分析[J].中国环境科学,2018,38(1):293-302.[27]李玉梅,王根林,李承阳,等.不同耕法下秸秆还田对土壤WSOC荧光特性的影响[J].光谱学与光谱分析,2020,40(4):1232-1237.[28]梁珂.紫色土不同土地利用方式下土壤DOM的光学特征及其影响因素[D].重庆:西南大学,2020.[29]王娇月,宋长春,王宪伟,等.冻融作用对土壤有机碳库及微生物的影响研究进展[J].冰川冻土,2011,33(2):442-452.[30]SADEGHI S H,NAJAFINEJAD A,GHAREMAHMUDLI S,et al.Reduction in soil loss caused by a freeze-thaw cycle through inoculation of endemic soil microorganisms[J].Applied Soil Ecology,2021,157:103770.[31]LIU M H,FENG F J,CAI T J,et al.Soil microbial community response differently to the frequency and strength of freeze-thaw events in a Larix gmelinii forest in the Daxing′an Mountains,China[J].Frontiers in Microbiology,2020(11):1164.[32]李龙,辛贵民,杜彦梅,等.春季冻融对2种温带森林土壤酶活性和土壤微生物生物量的影响[J].扬州大学学报(农业与生命科学版),2019,40(1):26-32.[33]刘荣杰,李正才,王斌,等.浙西北丘陵地区次生林与杉木林土壤水溶性有机碳季节动态[J].生态学杂志,2013,32(6):1385-1390.[34]刘雅俊,刘帅,甘磊,等.基于稀土氧化物示踪法探究冻融循环对黑土团聚体周转的影响[J/OL].土壤学报,(2023-08-22)[2023-12-20].https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9wA1q3N4CZHbHo029SUwqrzUpy_vdOIqsyZmCsxk6L bR7BUYoA3aKbIdVx7mVCnN23OJSB2andDUEhW3x8cPmQZe wpr5tyQETJb68MqgaAW9IKCN0DM-GEhosBpMAWrOj2hVIE=&uniplatform=NZKPT&language=CHS.[35]王艺璇,仲秋维,郑昕雨,等.冻融循环对土壤性状特征影响研究进展[J].中国土壤与肥料,2022(10):231-240.[36]周旺明,王金达,刘景双,等.冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J].生态与农村环境学报,2008,24(3):1-6.[37]郝瑞军,李忠佩,车玉萍.冻融交替对水稻土水溶性有机碳含量及有机碳矿化的影响[J].土壤通报,2007,38(6):1052-1057.[38]潘红卫,童文彬,雷宏军,等.施加有机肥对农田有机质和氮素演化影响的光谱学分析[J].光谱学与光谱分析,2022,42(10):3116-3123.

Memo

Memo:
-
Last Update: 2024-05-10