|Table of Contents|

Research on Agricultural Carbon Emissions in the Heilongjiang Reclamation Area Under Spatial and Temporal Differentiation

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年4
Page:
137-144
Research Field:
Publishing date:

Info

Title:
Research on Agricultural Carbon Emissions in the Heilongjiang Reclamation Area Under Spatial and Temporal Differentiation
Author(s):
SHI ShuaiXIAO Yuxun
(College of Economics and Management,Northeast Agricultural University,Harbin,Heilongjiang 150030)
Keywords:
agricultural carbon emissionsspatial and temporal differentiationLMDI model
PACS:
F 327
DOI:
10.11937/bfyy.20233323
Abstract:
Based on itspanel data from 2004 to 2020,the carbon emission factor method and the LMDI model were used to measure agricultural carbon emissions in it and analyzed effects of agricultural productivity,agricultural production structure,agricultural economic level and agricultural labor force size on its agricultural carbon emissions,in order to provide decision-making basis for low carbon agriculture development in Heilongjiang Reclamation Area.The results showed that the overall trend of agricultural carbon emissions in Heilongjiang Reclamation Area was on the rise,with an average annual growth rate of 3.98%;the first major source of agricultural carbon emissions was chemical fertilizer,followed by irrigation,agricultural film,pesticides and agricultural machinery;carbon emissions were mainly concentrated in the eastern and northeastern reclamation areas;the growth of economic level and the unbalanced agricultural production structure had a positive effect on carbon emissions,while the increase of agricultural production efficiency and the reduction of agricultural labor force led to less carbon emissions.To develop low-carbon agriculture,Heilongjiang Reclamation needs to develop smart agriculture with various high-tech technologies,establish a smart agricultural management models,and build a digital carbon emission monitoring and evaluation system.

References:

[1]李远玲,王金龙,杨伶.基于县域尺度的湖南省农业碳排放时空特征分析[J].中国农业资源与区划,2022,43(4):75-84.[2]王占彪,王猛,陈阜.华北平原作物生产碳足迹分析[J].中国农业科学,2015,48(1):83-92.[3]ADEWALE C,REGANOLD J P,HIGGINS S,et al.Agricultural carbon footprint is farm specific:Case study of two organic farms[J].Journal of Cleaner Production,2019,229:795-805.[4]叶娟惠,叶阿忠.科技创新、产业结构升级与碳排放的传导效应:基于半参数空间面板VAR模型[J].技术经济,2022,41(10):12-23.[5]卢东宁,张雨,雷世斌.“双碳”目标背景下陕西农业碳排放驱动因素与脱钩效应研究[J].北方园艺,2022(20):133-140.[6]夏四友,赵媛,许昕,等.1997—2016年中国农业碳排放率的时空动态与驱动因素[J].生态学报,2019,39(21):7854-7865.[7]李慧,李玮,姚西龙.基于GWR模型的农业碳排放影响因素时空分异研究[J].科技管理研究,2019,39(18):238-245.[8]蒋添诚,胡纯,王巧稚,等.湖北省农业碳排放时空特征及脱钩研究[J].环境污染与防治,2021,43(11):1476-1480.[9]蔡景丽,顾佳艳,陈敏,等.2000—2020年中国种植业碳排放驱动因素及预测分析[J].环境科学与技术,2023,46(2):159-167.[10]刘杨,刘鸿斌.山东省农业碳排放特征、影响因素及达峰分析[J].中国生态农业学报(中英文),2022,30(4):558-569.[11]王莉,刘莹莹,张亚慧,等.河南省农田生态系统碳源/汇时空分布及影响因素分解[J].环境科学学报,2022,42(12):410-422.[12]崔宁波,巴雪真.黑龙江省农业绿色发展水平评价[J].北方园艺,2021(8):157-163.[13]杜江,罗珺,王锐,等.粮食主产区种植业碳功能测算与时空变化规律研究[J].生态与农村环境学报,2019,35(10):1242-1251.[14]张露,何雨霏,陈坦,等.2011—2020年汾渭平原农田生态系统碳足迹的时空格局演变[J].生态环境学报,2023,32(6):1149-1162.[15]周一凡,李彬,张润清.县域尺度下河北省农业碳排放时空演变与影响因素研究[J].中国生态农业学报(中英文),2022,30(4):570-581.[16]陈红,王浩坤,秦帅.农业碳排放的脱钩效应及驱动因素分析:以黑龙江省为例[J].科技管理研究,2019,39(17):247-252.[17]丁宝根,赵玉,邓俊红.中国种植业碳排放的测度、脱钩特征及驱动因素研究[J].中国农业资源与区划,2022,43(5):1-11.[18]郝小雨.基于碳足迹的黑龙江垦区农业生态系统碳源/汇时空变化[J].中国农业资源与区划,2022,43(8):64-73.[19]孟军,范婷婷.黑龙江省农业碳排放动态变化影响因素分析[J].生态经济,2020,36(12):34-39.

Memo

Memo:
-
Last Update: 2024-03-15