|Table of Contents|

Analysis of Chloroplast Genetic Characteristics of Amygdalus mongolica

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年2
Page:
31-37
Research Field:
Publishing date:

Info

Title:
Analysis of Chloroplast Genetic Characteristics of Amygdalus mongolica
Author(s):
DUAN ChunyanWANG Xiaoling
(College of Agriculture,Henan University of Science and Technology,Luoyang,Henan 471000)
Keywords:
Amygdalus mongolicachloroplastcodonrepeated sequencephylogeny
PACS:
S 662.9
DOI:
10.11937/bfyy.20233115
Abstract:
Taking the ancient relic plant named Amygdalus mongolica as the test material,based on Illumina HiSeq XTen platform sequencing and bioinformatics analysis methods,the chloroplast genome characteristics and phylogenetic status of A.mongolica were studied,in order to provide reference for species identification of A.mongolica and the related species,phylogenetic status,and breeding of early spring ornamental plants and northwest barren desert-grassland plants.The results showed that the chloroplast genome of A.mongolica had a tetrad structure.The protein coding genes encoded a total of 26 428 codons,of which 29 types were preferred codons.The maximum number of codons UUU was 1 034.The minimum number of GCG in the codon was 137.The number of codons encoding leucine was the highest (2 637),accounting for 9.98% of the total.The number of codons encoding tryptophan was the lowest (531),accounting for only 1.94%.According to the setting parameters,16 tandem repeats and 31 SSR loci were found in the chloroplast genome of A.mongolica.Most SSRs were located in IGS (Intergenic Regions) and LSC Regions.No trinucleotide duplication was detected in SSRs.Based on the chloroplast genome sequence data,it was found that A.mongolica was closely related to Amygdalus persica and Amygdalus kansuensis.

References:

[1]马松梅,聂迎彬,段霞,等.蒙古扁桃植物的潜在地理分布及居群保护优先性[J].生态学报,2015,35(9):2960-2966.[2]廖阳,李昌珠,于凌一丹,等.我国主要木本油料油脂资源研究进展[J].中国粮油学报,2021,36(8):151-160.[3]史文君,魏海斌,刘小利,等.青海高原核桃果实油脂和生长动态变化分析[J].北方园艺,2022(3):34-40.[4]刘慧娟,刘桂香,刘果厚,等.蒙古扁桃种仁油理化性质及脂肪酸组成分析[J].中国油脂,2016,41(8):98-101.[5]郝海梅,贾小叶,周红兵,等.基于代谢组学的蒙古扁桃药材抗大鼠肾纤维化作用机制研究[J].药学学报,2020,55(9):2182-2190.[6]段义忠,白春梅,段春燕,等.基于叶绿体DNA非编码序列的蒙古扁桃谱系地理学研究[J].西北植物学报,2018,38(9):1625-1633.[7]赵雁武,仇农学,高霞,等.苹果籽油对实验性高脂血症大鼠的防治作用[J].第四军医大学学报,2008(6):556-558.[8]林优红,程霞英,严依雯,等.衣藻叶绿体表达重组蛋白及表达优化策略[J].中国生物工程杂志,2017,37(10):118-125.[9]ZHU S,NIU Z,XUE Q,et al.Accurate authentication of Dendrobium officinale and its closely related species by comparative analysis of complete plastomes[J].Acta Pharmaceutica Sincia B,2018(8):969-980.[10]DUAN C Y,SHEN Y H,ZHAO G F.Complete chloroplast genome characteristics of Prunus triloba Lindl.[J].Mitochond DNA Part B Resour,2020,5(1):504-505.[11]DUAN Y Z,SHEN Y H,KANG F R,et al.Characterization of the complete chloroplast genomes of the endangered shrub species Prunus mongolica and Prunus pedunculata (Rosales:Rosaceae)[J].Conservation Genet Resour,2019,11(3):249-252.[12]LIU C,SHI L,ZHU Y,et al.CpGAVAS,an integrated web server for the annotation,visualization,analysis,and GenBank submission of completely sequenced chloroplast genome sequences[J].BMC Genom,2012(13):715.[13]STOTHARD P,GRANT J R,van DOMSELAAR G.Visualizing and comparing circular genomes using the CGView family of tools[J].Brief Bioinform,2019(20):1576-1582.[14]KUMAR S,STECHER G,TAMURA K.MEGA 7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J].Mol Biol Evol,2016(33):1870.[15]KURTZ S,CHOUDHURI J V,OHLEBUSCH E,et al.REPuter:The manifold applications of repeat analysis on a genomic scale[J].Nucleic Acids Res,2001,29(22):4633-4642.[16]BEIER S,THIEL T,MNCH T,et al.MISA-web:A web server for microsatellite prediction[J].Bioinformatics,2017,33(16):2583-2585.[17]张杰.珍稀濒危植物蒙古扁桃的遗传多样性及系统地位的研究[D].呼和浩特:内蒙古大学,2012.[18]YANG Y,JUN F,YAO G X,et al.,Genome re-sequencing reveals the evolutionary history of peach fruit edibility[J].Nature Communications,2018(9):5404.

Memo

Memo:
-
Last Update: 2024-02-08