|Table of Contents|

Effects of Different Grasses for Ecological Restoration on Soil Evapotranspiration

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年3
Page:
71-78
Research Field:
Publishing date:

Info

Title:
Effects of Different Grasses for Ecological Restoration on Soil Evapotranspiration
Author(s):
SUN TiejunNIE MingheTENG WenjunHOU Xincun
(Institute of Grassland,Flowers and Ecology,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097)
Keywords:
grasses for ecological restorationsoil evapotranspirationbiomassrootwater absorption
PACS:
S 688.4
DOI:
10.11937/bfyy.20232945
Abstract:
Medicago sativa,Zoysia japonica,Carex leucochlora,and Bromus inermis were used as experimental materials,ecological restoration of degraded vegetation was restored by artificial grassland constructing.The effects of different grassland cover on soil evapotranspiration and the main mechanism for water absorption of vegetation were studied by monitoring vegetation NDVI,root volume,water moisture content and soil evapotranspiration real-timely,in order to provide reference for suitable grasses selected of ecological restoration in North of China.The results showed that vegetation biomass increased quickly after all four types of ecological restoration grass were constructed,and soil evapotranspiration reduced obviously in non-growing season.But soil evapotranspiration increased greatly during growing season with vegetation biomass and water absorbed in the soil increasing.Then the peak values of monthly evapotranspiration of different grasslands were Carex leucochlora (112.65 mm)>Zoysia japonica (107.42 mm)>Medicago sativa (98.19 mm)>Bromus inermis (86.69 mm).Moreover,it was every important for root volume and distribution on soil moisture absorbed.The capacity of water absorption for vegetation was stronger when root volume was greater and root distribution was more concentrated.In the experiment,the main space areas of Carex leucochlora and Zoysia japonica absorbing soil moisture were all 0-20 cm layer of soil,and those of Medicago sativa and Bromus inermis were all 20-40 cm layer of soil.In conclusion,grasses with more capacity of soil and water conservation and less soil moisture absorption should be selected during ecological restoration as far as possible.Bromus inermis was selected firstly,and then, Medicago sativa in the experiment.

References:

[1]陈有君,红梅,李绍良,等.浑善达克沙地不同植被下的土壤水分状况[J].干旱区资源与环境,2004,18(1):68-73.[2]樊自立,陈亚宁,李和平,等.中国西北干旱区生态地下水埋深适宜深度的确定[J].干旱区资源与环境,2008,22(2):1-5.[3]白永红,高志永,陆静,等.模拟干化土壤中的植被生长及土壤水分变化[J].西北林学院学报,2018,33(5):1-8,74.[4]汪海娇,田丽慧,张登山,等.青海湖东沙地不同植被恢复措施下土壤水分变化特征[J].干旱区研究,2021,38(1):76-86.[5]付刚,沈振西.藏北高原不同海拔高度高寒草甸蒸散与环境温湿度的关系[J].中国草地学报,2015,37(3):67-73.[6]刘可,杜灵通,候静,等.2000—2014年宁夏草地蒸散时空特征及演变规律[J].草业学报,2018,27(3):1-12.[7]乔文英,安琪琪,常小峰,等.黄土高原草地灌丛化对潜在植被截留和土壤蓄水能力的影响[J].水土保持通报,2022,42(1):69-76.[8]任庆福,杨志勇,李传哲,等.变化环境下作物蒸散研究进展[J].地球科学进展,2013,28(11):1227-1238.[9]LIU C M,ZHANG X Y,ZHANG Y Q.Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J].Agricultural and Forest Meteorology,2002,111(2):109-120.[10]王怡宁,朱月灵.蒸渗仪国内外应用现状及研究趋势[J].水文,2018,38(1):81-85.[11]成向荣,黄明斌,邵明安.神木水蚀风蚀交错带主要人工植物细根垂直分布研究[J].西北植物学报,2007,27(2):321-327.[12]牛海,李和平,赵萌莉,等.毛乌素沙地不同水分梯度根系垂直分布与土壤水分关系的研究[J].干旱区资源与环境,2008,22(2):157-163.[13]胥生荣,张恩和,马瑞丽,等.覆盖对枸杞根系土壤环境和水分利用的影响[J].草业学报,2019,28(2):12-22.[14]吴锦奎,丁永建,沈永平,等.黑河中游地区湿草地蒸散量试验研究[J].冰川冻土,2005,27(4):582-590.[15]吴锦奎,丁永建,王根绪,等.干旱区内陆河流域中游低湿草地蒸散特征[J].中国生态农业学报,2007,15(4):18-21.[16]孙洪仁,关天复,孙建益,等.不同年限紫花苜蓿(生长)水分利用效率和耗水系数的差异[J].草业科学,2009,26(3):39-42.[17]裴宏伟,张红娟,王飞枭,等.河北坝上地区雨养裸燕麦田间蒸散规律[J].干旱地区农业研究,2021,39(4):203-208.[18]刘笑吟,王海明,王钥,等.节水灌溉稻田蒸发蒸腾过程及其比例变化特征研究[J].农业机械学报,2021,52(7):271-282.[19]李淑芹,雷廷武,詹卫华,等.修剪留茬高度对北京地区草坪草耗水量的影响[J].农业工程学报,2006,22(11):74-78.[20]ZHANG J,ZHAO H,ZHANG T,et al.Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land[J].Journal of Arid Environments,2005,62(4):555-566.[21]张健,刘国彬.黄土丘陵区不同植被恢复模式对沟谷地植物群落生物量和物种多样性的影响[J].自然资源学报,2010,25(2):207-217.[22]谭翻,杨鹏年,王翠,等.干旱区受损植被生态恢复需水量:以新疆哈巴河县平原区为例[J].水土保持通报,2023,43(1):244-252.[23]PEI S F,FU H,WAN C G.Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia,China[J].Agriculture,Ecosystems and Environment,2008,124(1/2):33-39.[24]刘炀,韩朝,王晔,等.两种草坪草混播青绿苔草对草皮质量的影响[J].北方园艺,2023(15):51-58.[25]彭燕,张新全,周寿荣.我国主要草坪草种质资源研究进展[J].园艺学报,2005,32(2):359-364.[26]李楠,李海梅,刘洪庆.不同混播草坪草的蒸腾耗水特性研究[J].北方园艺,2012(10):67-70.[27]李晓文,李海梅,董琳,等.五种草坪草蒸散特性研究[J].北方园艺,2014(2):71-75.[28]侯晓杰,梁魁景,于占晶,等.不同修剪高度对三种草坪草分蘖的影响[J].北方园艺,2022(4):68-75.[29]尤凤春,郭丽霞,史印山,等.北京强降雨与道路积水统计分析及应用[J].气象,2013,39(8):1050-1056.[30]王亦尘,高强,杜龙刚,等.北京市1950—2017年汛期降雨特征分析[J].中国防汛抗旱,2020,30(2):21-26,46.[31]刘均阳,周正朝,苏雪萌.植物根系对土壤团聚体形成作用机制研究回顾[J].水土保持学报,2020,34(3):267-273,298.[32]白永会,查轩,吴伟成,等.不同植被恢复模式对退化花岗岩红壤渗透性和持水量的影响[J].水土保持通报,2023,43(2):9-15.[33]孙铁军,刘素军,武菊英,等.6种禾草坡地水土保持效果的比较研究[J].水土保持学报,2008,22(3):158-162.[34]BRADFORD J M,HUANG C H.Interrill soil erosion as affected by tillage and residue cover[J].Soil and Tillage Research,1994,31(4):353-361.[35]韩典辰,张方敏,陈吉泉,等.半干旱区草地站蒸散特征及其对气象因子和植被的响应[J].草地学报,2021,29(1):166-173.[36]吴宏玥,杜灵通,乔成龙,等.基于蒸散演变驱动的宁夏绿洲平原生态系统耗水变化[J].水土保持学报,2023,37(3):172-180,189.

Memo

Memo:
-
Last Update: 2024-03-01