|Table of Contents|

Effects of Soil Moisture on Decomposition of Pepper Straw and Soil Properties at High Temperature

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2024年5
Page:
82-89
Research Field:
Publishing date:

Info

Title:
Effects of Soil Moisture on Decomposition of Pepper Straw and Soil Properties at High Temperature
Author(s):
QIU Meihua1ZHU Qian234FAN Xinhui1LIANG Yonghong1MA Yan234LUO Jia234
(1.Jiangsu Province Station of Farmland Quality and Agro-Environmental Protection,Nanjing,Jiangsu 210036;2.College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing,Jiangsu 210095;3.National Agricultural Experiment Station for Agricultural Environment in Luhe,Nanjing,Jiangsu 210014;4.Institute of Agricultural Resource and Environmental Sciences,Jiangsu Academy of Agricultural Sciences,Nanjing,Jiangsu 210014)
Keywords:
pepper strawstraw returningdecomposing condition
PACS:
S 156.2
DOI:
10.11937/bfyy.20232227
Abstract:
Taking pepper straw as the test material,the effects of different soil water saturations on the decomposition of pepper straw returned to the field in situ under two soil conditions were investigated,in order to reveal the field decomposition process of vegetable straw and analyze the key environmental factors affecting straw degradation.The results showed that the decomposition effect of pepper straw was different in the two soils,in sandy soil,the decomposition rate was fastest at 80% soil water saturation,while in clay soil,the rate reached a peak at 100% soil water saturation.The same was true for lignin hemicellulose and cellulose,in sandy soils,their decomposition rates were highest when the soil water saturation reached 80%,while in clay soils,their decomposition rates peaked at 100%.In addition,in sandy soil,the intensity and duration of the impact of pepper straw returning to the field on soil pH were lower than those in clay soil.Moreover,the higher the water content,the smaller the change in soil electrical conductivity.The impact of pepper straw decomposition on electrical conductivity in sandy soil was greater than that in clay soil.According to environmental factors correlation analysis and random forest analysis,the results showed that water saturation and degradation time were the two most significant environmental factors affecting the degradation of pepper straw,because they had the highest positive correlation with the degree of decomposition.

References:

[1]杜鹏祥,韩雪,高杰云,等.我国蔬菜废弃物资源化高效利用潜力分析[J].中国蔬菜,2015(7):15-20.[2]常瑞雪.蔬菜废弃物超高温堆肥工艺构建及其过程中的氮素损失研究[D].北京:中国农业大学,2017.[3]毕于运,王亚静,高春雨.中国主要秸秆资源数量及其区域分布[J].农机化研究,2010,32(3):1-7.[4]韩雪,常瑞雪,杜鹏祥,等.不同蔬菜种类的产废比例及性状分析[J].农业资源与环境学报,2015,32(4):377-382.[5]谢计平,郑智韬,王立光.甘肃省尾菜资源化利用模式探析[J].甘肃农业科技,2019(9):77-80.[6]辜运富,张小平,涂仕华,等.长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响[J].生态学报,2008,28(5):2123-2130.[7]李纯燕,杨恒山,萨如拉,等.不同耕作措施下秸秆还田对土壤速效养分和微生物量的影响[J].水土保持学报,2017,31(1):197-201,210.[8]杨宪龙,路永莉,同延安,等.长期施氮和秸秆还田对小麦-玉米轮作体系土壤氮素平衡的影响[J].植物营养与肥料学报,2013,19(1):65-73.[9]王晓玥,蒋瑀霁,隋跃宇,等.田间条件下小麦和玉米秸秆腐解过程中微生物群落的变化:BIOLOG分析[J].土壤学报,2012,49(5):1003-1011.[10]van SOEST P,ROBERTSON J,LEWIS B .Symposium:Carbohydrate methodology,metabolism,and nutritional implications in dairy cattle [J].Journal of dairy science,1991,74(10):3583-3597.[11]UJJ A,PERCSI K,BERES A,et al.Analysis of quality of backyard compost and its potential utilization as a circular bio-waste source[J].Applied Sciences,2021,11(10):4392.[12]JING Z,CHENG J,SU J,et al.Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland[J].Ecological Engineering,2014,64:171-178.[13]董志新,孙波,殷士学,等.气候条件和作物对黑土和潮土固氮微生物群落多样性的影响[J].土壤学报,2012,49(1):130-138.[14]孔滨,孙波,郑宪清,等.水热条件和施肥对黑土中微生物群落代谢特征的影响[J].土壤学报,2009,46(1):100-106.[15]田平,姜英,孙悦,等.不同还田方式对玉米秸秆腐解及土壤养分含量的影响[J].中国生态农业学报(中英文),2019,27(1):100-108.[16]王佳佳,奚永兰,常志州,等.麦秸不同部位生物降解速率差异[J].农业资源与环境学报,2015,32(1):74-80.[17]陈帅,刘峙嵘,曾凯.腐秆剂对水稻秸秆腐解性能的影响[J].环境工程学报,2016,10(2):839-844.[18]GUO H,HE T,LEE D J.Contemporary proteomic research on lignocellulosic enzymes and enzymolysis:A review[J].Bioresource Technology,2022,344:126263.[19]吴文辉,朱为静,朱凤香,等.蔬菜废弃物还田资源化利用潜力分析[J].浙江农业科学,2020,61(10):2018-2023.[20]黄运湘,王改兰,冯跃华,等.长期定位试验条件下红壤性水稻土有机质的变化[J].土壤通报,2005,36(2):181-184.[21]倪进治,徐建民,谢正苗.有机肥料施用后潮土中活性有机质组分的动态变化[J].农业环境科学学报,2003,22(4):416-419.[22]匡恩俊.不同还田方式下大豆秸秆腐解特征研究[J].大豆科学,2010,29(3):479-482.[23]王旭东,陈鲜妮,王彩霞,等.农田不同肥力条件下玉米秸秆腐解效果[J].农业工程学报,2009,25(10):252-257.[24]GUO X X,LIU H T,WU S B.Humic substances developed during organic waste composting:Formation mechanisms,structural properties,and agronomic functions[J].Science of the Total Environment,2019,662:501-510.[25]徐金强,刘庆涛,刘素慧,等.大蒜秸秆还田对温室番茄连作土壤理化性质及其根系的影响[J].北方园艺,2016(1):152-156.

Memo

Memo:
-
Last Update: 2024-03-28