|Table of Contents|

Metabolic Analysis of Auricularia auricula(L.ex Hook.)Underw Mycelium Under Different Carbon Source Culture Conditions

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年18
Page:
119-128
Research Field:
Publishing date:

Info

Title:
Metabolic Analysis of Auricularia auricula(L.ex Hook.)Underw Mycelium Under Different Carbon Source Culture Conditions
Author(s):
PANG JieYU ChuanzongSONG XiaoqingLI YajiaoWANG HaiyanSUN Guoqin
(Institute of Vegatables and Flowers,Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences,Hohhot,Inner Mongolia 010030)
Keywords:
Auricularia auricula(L.ex Hook.)Underwliquid chromatography-mass spectrometrymetabolomicspath analysis
PACS:
S 646.6
DOI:
10.11937/bfyy.20230543
Abstract:
Taking Auricularia auricula (L.ex Hook.) Underw mycelium cultured without carbon source as test material,the nontargeted metabonomic analysis of Auricularia auricula (L.ex Hook.) Underw mycelium was conducted by liquid chromatography mass spectrometry (LC-MS) technology.The effects of different carbon source treatments on the metabolites of Auricularia auricula (L.ex Hook.) Underw mycelium were studied,in order to provide reference for the mechanism of Auricularia auricula (L.ex Hook.) Underw mycelium degradation of carbon source.The results showed that based on principal component analysis (PCA),there were significant differences between samples;a total of 588 metabolites were identified based on the results of partial least squares discriminant analysis.A total of 66 differential metabolites were obtained by screening significant metabolites (P<0.05),including amino acids and their derivatives,unsaturated fat acids,organic acids and their derivatives,organic compounds,phenols,lipids,terpenes and other compounds.Based on KEGG pathway analysis,differential metabolites were annotated into 21 metabolic pathways,of which 7 were significantly enriched (P<0.05).

References:

[1]吴芳,员瑗,戴玉成,等.木耳属研究进展[J].菌物学报,2014,33(2):198-207.[2]王明友,宋卫东,王帅洋,等.我国黑木耳生产技术研究[J].中国农机化学报,2022,43(3):99-103.[3]权泉,刘佳,荆瑞勇,等.混料设计优化黑木耳菌丝生长的“农业剩余物”配方[J].微生物学通报,2023,52(1):1-14.[4]朱艳琴.基于代谢组学及转录组学对不同生境的辣木叶化学多样性研究[D].昆明:昆明理工大学,2021.[5]黄小丹,陈梦雨,黄文洁,等.基于代谢组学的植物多酚及其肠道健康效应研究进展[J].生物技术通报,2021,37(1):123-136.[6]谢伟,郝志鹏,郭兰萍,等.丛枝菌根影响植物萜类化合物合成与积累研究进展[J].生物技术通报,2020,36(9):49-63.[7]胡宁宁,叶苗芬,娄永根.利用化学激发子防控作物害虫研究进展[J].植物保护学报,2018,45(5):937-945.[8]李飞,黄秋婷,隋新,等.蛹虫草产β-葡萄糖苷酶与α-L-阿拉伯呋喃糖苷酶活性的研究及在转化人参皂苷Rg1与Rc方面的应用[J].食品科学,2023,44(8):152-161.[9]冷悦,王淑敏,王恩鹏,等.两种碳源对猴头菇液体发酵中的多糖分泌及胞外酶活性的影响[J].食品安全质量检测学报,2022,13(13):4361-4367.[10]王兴迪,田沛.适宜内生真菌Epichlosinensis生长的碳氮源筛选[J].草业科学,2021,38(7):1278-1286.[11]刘利平,孙宇,帅纪晨,等.不同碳氮源对榆黄蘑菌丝体生物量及其代谢产物的影响[J].中国食用菌,2021,40(4):78-86.[12]郑焕,林冬梅,刘峻源,等.基于LC-QTOF-MS代谢组学解析牛樟芝子实体和菌丝体中氨基酸代谢差异[J].生物技术通报,2023,53(2):1-13[13]刘桂君,乔宇琛,周思静,等.基于代谢组学的蛹虫草菌株虫草素合成途径研究[J].食品与发酵工业,2023,49(7):16-25[14]付海辉,胡嘉敏,黄俊英,等.基于GC-MS技术的糯稻“航天稻”和籼稻“昌恢871”代谢组学研究[J].江西农业大学学报,2022,44(5):1057-1065.[15]霍冬敖,田瑞丰,任永权,等.基于UPLC-MS/MS技术的野生及栽培韭菜籽的代谢组学研究[J].广西植物,2022,42(12):1995-2006.

Memo

Memo:
-
Last Update: 2023-11-27