|Table of Contents|

Novel Antimicrobial Peptide on Control of Tomato Gray Mold and Its Mechanism

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年18
Page:
18-27
Research Field:
Publishing date:

Info

Title:
Novel Antimicrobial Peptide on Control of Tomato Gray Mold and Its Mechanism
Author(s):
JIA YanliHAN ZiweiQIU Yan
(College of Food Science and Biology,Hebei University of Science and Technology,Shijiazhuang,Hebei 050018)
Keywords:
antimicrobial peptidestomato gray moldcontrol effectantifungal mechanismantioxidation
PACS:
S 641.2
DOI:
10.11937/bfyy.20230407
Abstract:
Tomato,antimicrobial peptides (AMPs) and tomato Botrytis cinerea were used as test materials.The antifungal effects of CB and D20I-39 on tomato B.cinerea and the relative mechanisms were investigated by plate experiments.The control effects of AMPs on tomato leaves infected by gray mold and the indexes of disease resistance and antioxidation were analyzed by pot experiments,in order to provide reference for AMPs to control tomato gray mold.The results showed that both CB and D20I-39 could inhibit mycelial growth and spore germination of B.cinerea dosedependently and caused leakage of intracellular nucleic acid and protein in B.cinerea.After treatment of CB and D20I-39,the mycelia of B.cinerea were flattened,shrunken and narrowed.And as the concentration increased,the mycelial folds became more severe and even rupture occurred.In pot experiments,the preventive test demonstrated the control effects of CB and D20I-39 were 96.37%±0.13% and 83.41%±0.17%,respectively and the therapeutic test exhibited the control effects of CB and D20I-39 were 14.86%±0.35% and 59.74±0.23%,respectively.AMPs could increase the activities of PAL,SOD and the levels of Pro,whereas decreased MDA content.The results indicated that the novel AMPs CB and D20I-39 inhibited B.cinerea by destorying cell membrane to exert the antifungal activity,and reduced the incidence and diseases index of tomato gray mold.CB and D20I-39 had good control effects on tomato gray mold.

References:

[1]MOURA G G D D,BARROSA V D,MACHADO F,et al.Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.[J].Microbiological Research,2021,251:126793-126807.[2]贾艳丽,仇燕.抗菌肽的抗菌机制及其在医药中的应用前景[J].河北科技大学学报,2021,42(1):67-74.[3]CZAPLEWAKI L,BAX R,CLOKIEM M,et al.Alternatives to antibioticsa pipeline portfolio review[J].The Lancet Infectious Diseases,2016,16(2):239-251.[4]郭娟,贠建民,邓展瑞,等.Bacillus pumilus HN10抗菌肽P1对粉红单端孢的抑菌机理[J].食品科学,2019,40(19):17-22.[5]冯林慧.大豆蛋白抗菌多肽对黑曲霉的抑菌机制及应用[D].济南:齐鲁工业大学,2019.[6]刘莎.抗菌肽mastoparanS,thanatin和ponericin W1对柑橘果实酸腐病的控制效果与机制研究[D].重庆:西南大学,2019.[7]罗雪云,吴晓彤,谢颖思,等.抗菌肽壳聚糖复合膜对水果黄瓜的保鲜作用[J].现代食品科技,2020,36(7):142-149.[8]彭勃,冯孔龙,苗建银,等.副干酪乳杆菌FX6产抗菌肽粗提物对荔枝贮藏品质的影响[J].食品科学,2018,39(7):249-255.[9]顾晨涛.鲫鱼鱼鳞抗菌肽的制备、纯化及其果蔬保鲜应用研究[D].杭州:杭州工商大学,2019.[10]花晨艳.姜黄素对猕猴桃灰霉病抑制作用机理研究[D].合肥:合肥工业大学,2019.[11]FENG L H,LI Y Q,WANG Z H,et al.Antifungal actions of glycinin basic peptide against Aspergillus niger through the collaborative damage to cell membrane and mitochondria[J].Food Biophysics,2019,14(8):97-107.[12]刘均玲.防治蕃茄灰霉病植物提取物的筛选与研究[D].保定:河北农业大学,2003.[13]张玉珺,梁博文,宋雅萍,等.‘345’中间砧与红富士苹果嫁接愈合过程中酚类物质及其相关酶活性的变化[J].北方园艺,2021(15):21-27.[14]陈秀香,王学涛,马金秀,等.生防菌FC21对番茄灰霉病的防效及其促生作用[J].北方园艺,2022(12):29-33.[15]闫雷,张思佳,孟庆尧,等.Cd胁迫对高、低积累白菜生理生化特性的影响[J].北方园艺,2021(20):1-10.[16]FURLAN A L,BIANUCCI E,GIORDANO W,et al.Proline metabolic dynamics and implications in drought tolerance of peanut plants[J].Plant Physiology and Biochemistry,2020,151:566-578.[17]MIRJANI L,SALIMIA A,MATINIZADEH M,et al.The role of arbuscular mycorrhizal fungi on acclimatization of micropropagated plantlet Satureja khuzistanica Jam.by ameliorating of antioxidant activity and expression of PAL gene[J].Scientia Horticulturae,2019,253:364370.[18]XAVIER W D S,LECLERCQB E,CARVALHO P L P F,et al.The putative effect of a SODrich melon pulpconcentrate on growth performance and antioxidant status of Nile tilapia (Oreochromis niloticus) under heat/dissolved oxygeninduced stress[J].Aquaculture,2020,529:735669-735676.[19]YUSUF M,ALMEHRZI A S S,ALNAJJRA A J N,et al.Glucose modulates copper induced changes in photosynthesis,ion uptake,antioxidants and proline in Cucumis sativus plants[J].Carbohydrate Research,2021,501:108271-108280.[20]WANG Y,LIU X Y,CHEN T,et al.Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo[J].Postharvest Biology and Technology,2020,159:111038111044.[21]SHAHMIRI M,ENCISO M,MECHLER A.Controls and constrains of the membrane disrupting action of Aurein 12[J].Scientific Reports,2015,5(1):16378-16391.[22]DEVIA B,SINGHA G,DASH A K,et al.Chemically induced systemic acquired resistance in the inhibition of french bean rust[J].Current Plant Biology,2020,23:100151-100160.[23]ABBASI S,SADEGHI A,OMIDVRI M,et al.The stimulators and responsive genes to induce systemic resistance against pathogens:An exclusive focus on tomato as a model plant[J].Biocatalysis and Agricultural Biotechnology,2021,33:101993-102000.[24]朱英波,史凤玉,张瑞敬,等.壳寡糖和钕复合处理诱导黄瓜对枯萎病的抗性[J].中国生物防治学报,2014,30(4):528-533.[25]张松杰.壬二酸诱导烟草抗病性作用机理探究及其在生产上的应用[D].郑州:河南农业大学,2020.[26]张钰,唐明.丛枝菌根真菌对青杨抗溃疡病生物量和抗病酶活性的影响[J].菌物学报,2021,40(5):1110-1122.

Memo

Memo:
-
Last Update: 2023-11-22